Outcomes of Patients with No Calcium Yield in Stereotactic-guided Breast Biopsy for Microcalcifications: Ten-year Experience

KML Wong¹, CY Lui², HS Lam²

¹Department of Radiology and Organ Imaging, United Christian Hospital, Kwun Tong, Kowloon, Hong Kong; ²Department of Radiology, Kwong Wah Hospital, 25 Waterloo Road, Kowloon, Hong Kong

ABSTRACT

Objectives: To look at the outcomes of patients who underwent stereotactic-guided breast biopsy for microcalcifications without specimen yielding calcium, so as to facilitate management.

Methods: In this retrospective study, records of all patients who underwent stereotactic-guided breast biopsy for microcalcifications from 2001 to 2010 in the Department of Radiology, Kwong Wah Hospital, were reviewed. Information including radiological grading, pathology, and outcomes in those without calcium in their specimen was retrieved.

Results: In all, 2028 stereotactic-guided biopsies for microcalcifications were performed in the relevant period. The number of biopsy specimens with radiography showing calcium was 60 (3%), whereas 32 (53%) of the latter specimens also yielded no calcium when examined pathologically. Regarding these patient specimens without calcification, pathologically 4 (13%) showed malignancy, 2 (6%) showed atypical ductal hyperplasia, 23 (72%) showed a benign pathology, and 3 (9%) were reported as specimen insufficient. The six patients with biopsy showing malignancy or atypical ductal hyperplasia underwent surgery. Regarding the 23 patients with benign pathology, 10 had microcalcifications radiologically graded as R2 (probably benign), 6 were of R3 (indeterminate) grade, and 7 were of R2-3 grade. Two patients graded R3 had surgery that yielded malignant pathology. Among patients with insufficient specimens, one had R2 microcalcifications and two were graded R3; one of the latter had surgery that yielded malignancy. For the remaining 23 patients, they either had follow-up mammograms establishing stability, or surgical excision or repeat biopsy showing benign pathology. False-negative rate in R3 group without specimen calcification was high (38%).

Conclusion: For R3 (indeterminate) microcalcifications without specimen yielding calcium in the stereotactic biopsy, repeat biopsy is advised even if the initial pathology appears benign. For R2 and R2-3 microcalcifications without specimen yielding calcium, follow-up mammography is advised.

Key Words: Biopsy; Breast neoplasms; Calcinosis; Female; Mammography

中文摘要

立體定向引導下乳腺活檢微小鈣化的檢查中病人無鈣化的結果：十年工作經驗分享

黃嘉敏、呂振英、林漢城

目的：探討接受立體定向引導下乳腺活檢微小鈣化病變但標本無鈣化的病人結果，以幫助病人
INTRODUCTION

Since its introduction by Parker et al in 1990,1 stereotactic-guided breast biopsy has become the main method for biopsy of non-palpable breast lesion. It has been reported to be a reasonably accurate, non-invasive investigation.2-8 The failure rate of retrieving targeted non-palpable breast lesions varies from 2 to 21%.9-13 Optimal results for core biopsy of breast microcalcifications can be achieved with the use of 14G core biopsy needles, an increase in the number of core biopsy specimens obtained from any given lesion, and with increased experience with the procedure.2,3,6,14

The objective of our study was to retrospectively determine the outcome of patients who underwent stereotactic-guided breast biopsy in the Department of Radiology, Kwong Wah Hospital, Hong Kong, in search of microcalcifications, but with the absence of calcium in the biopsied specimens. In addition, we aimed to provide recommendations on the appropriate management on this group of patients.

METHODS

Retrospective review of the electronic records of all patients who underwent stereotactic-guided core biopsy for breast microcalcifications in the Department of Radiology, Kwong Wah Hospital between January 2001 and December 2010 was performed. Biopsies for breast density and architectural distortion were excluded. Those with biopsies performed in search of breast microcalcifications but without calcium in their specimens were included in this study. Information including radiological grading of the mammogram based on the National Screening System, UK (R1: normal / definitely benign; R2: probably benign; R3: indeterminate; R4: probably malignant; R5: malignant), technical factors of the biopsy, pathology, and the outcomes of patients were analysed.

The lesions were biopsied on a dedicated stereotactic prone biopsy table using a digital imaging system (Lorad, Danbury, USA). In challenging cases where the targeted microcalcifications were too faint or too posteriorly situated, lesions were biopsied on erect table (StereoLoc, Hologic, USA) instead. Core biopsies were performed with a 14G long-throw (22- or 25-mm excursion) automatic biopsy needle and gun (ProMag 2.2 or 2.5; Manan Medical Systems, Northbrook, USA) or 14G short-throw (14-mm excursion) automatic biopsy needle and gun (ProMag 1.4).

Biopsied tissues underwent immediate radiography to detect the presence of calcium. If the specimen appeared radiographically negative for calcium, the corresponding pathological report was reviewed for the presence of calcium. For cases with negative specimen calcium after pathological examination, the radiological grading of the targeted microcalcifications, technical factors about the core biopsy, and specimen pathology were discussed in a joint mammography meeting to
reach a final decision on subsequent management, such as repeat biopsy, surgery, or follow-up mammogram. The follow-up period ranged from 1.5 to 11.5 years.

RESULTS
The total number of stereotactic-guided biopsies for breast microcalcifications during the 10-year study period (2001 to 2010) was 2028. The number of biopsy specimens without radiographically detected calcium was 60 (3%). During the study period, there was a significant rise in number of stereotactic-guided core biopsies in search of breast microcalcifications in Kwong Wah Hospital (Figure 1), along with a reduced failure rate for the retrieval of breast microcalcifications (Figure 2).

Regarding the 60 patients without radiographically detected calcium in their specimens, their mean and median ages were 49 (range, 36-60) years. The radiological grading of the targeted microcalcifications ranged from R2 to R3; 29 were classified as R2 (probably benign), 12 as R2-3, and 19 cases as R3 (indeterminate). All core biopsies were performed with a 14G needle, but the number of cores obtained from each patient showed diversity, varying from 2 to 30 (Table 1). The duration of the procedure ranged from 3 to 150 (mean, 65) minutes. The breast thicknesses ranged from 15 to 64 (mean, 34) mm. In all, 54 (90%) of the patients had the procedure on the prone table, while 6 (10%) had it performed on the erect table.

The results of pathological examination were reviewed for specimens reported as radiographically negative for calcium. Notably, 32 (53%) of the patients had no calcium detected even after pathological examination of their specimens, whereas it was detected in the remaining 28 specimens. The latter group was considered to have microcalcifications which were too faint to be detected by radiography. Regarding the 32 patient specimens devoid of calcium by radiography and pathological examination, 23 (72%) had a benign pathology, 4 (13%) showed malignancy, 3 (9%) were reported as specimen insufficient, and 2 (6%) had atypical ductal hyperplasia (Table 2).

Table 1. Number of core biopsies obtained in the 60 patients with absence of specimen radiograph calcium.

<table>
<thead>
<tr>
<th>No. of specimens</th>
<th>No. of patients (n=60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>
Surgery was performed on the six patients with malignancy or atypical ductal hyperplasia; the final pathology confirmed the presence of cancer in four and ductal cancer in the two with atypical ductal hyperplasia. In the 23 patient specimens reported as having benign pathology, mammography showed 10 (43%) were of R2 grade, 7 (30%) were of R2-3 grade, and 6 (26%) were of R3 grade. Further management plans were decided in the joint mammogram meeting, where the clinical histories, features of microcalcifications in the mammograms, and technical aspects of the stereotactic biopsy were taken into account. Of the 10 patients in the R2 group, nine had microcalcifications at follow up mammography; the appearance of which remained static. The remaining patient had a repeat biopsy showing normal pathology that was also negative for calcium. In the R2-3 category, 6 out of 7 patients had follow-up mammography showing static microcalcifications over at least 4 years. The remaining patient in this group had surgery because of fibrocystic change. The management plans and outcomes of the six patients with the R3-categorised specimens were as follows: two had repeat biopsies showing no malignancy and were positive for calcium; three had follow-up mamograms done, two of whom subsequently underwent surgery (based on a radiology report) and both yielded invasive ductal cancer. The third patient had static microcalcifications noted in a follow-up mammogram. The remaining patient in this group had no repeat biopsy or mammography as the microcalcifications were located at the inframammary fold and upon review considered to be in the skin. There were three patients with no calcium detected after mammography in whom the initial stereotactic biopsy yielded insufficient tissue for pathology. One of these had been categorised as R2 and the follow-up mammogram was static. The other two patients were of R3; one of them had surgery (suggested by the reporting radiologist based on the follow-up mammogram) and turned out to have intraductal cancer. The other had a repeat biopsy yielding normal pathology devoid of calcium (Table 3).

In summary, of the 32 patients with specimens that were radiographically and pathologically calcium-negative specimen out of the 2028 stereotactic breast biopsies for
Outcome with No Calcium in Stereotactic Breast Biopsy

microcalcifications in the 10-year study period, eight (25%) had repeat biopsies or surgery. The remaining 24 (75%) of these patients (with no repeat biopsy or surgery) were followed up for 1.5 to 11.5 years. None of these patients had malignant breast pathology diagnosed during their follow-up. Of the eight patients who had repeat biopsies or surgery finally, three had a malignant pathology, all of whom had R3 breast microcalcifications. The false-negative rate in patients with R3 mammograms and negative specimen for calcium was 38%.

DISCUSSION
Breast microcalcifications are found incidentally during screening of asymptomatic patients or are associated with other abnormalities in patients with symptoms. While some microcalcifications show typical shapes and distributions suggesting their benign or malignant nature, the remainder show non-specific features and create diagnostic problems for radiologists. Radiologists are responsible for categorising microcalcifications according to the risk of malignancy so as to provide directions on management plans. During the study period, we categorised microcalcifications with regard to the National Screening System, UK — R2 (probably benign) is equivalent to Breast Imaging Reporting and Data Systems (BIRADS) category 3 (probably benign) while R3 (indeterminate) is equivalent to BIRADS category 4 (suspicious abnormality). Since non-specific microcalcifications have an overall malignancy rate of 22-37%, further biopsy and histological evaluation appears mandatory.

Stereotactic-guided core biopsy offers several advantages over fine-needle aspiration cytology, which had been frequently used in the past. For core biopsy, it is rare for specimens to be insufficient due to the larger-bore needle used. Such needles enable more complete characterisation of the target lesions by pathologists, and differentiation of intraductal from invasive carcinoma. With core biopsy, the interpretation can be rendered by pathologists who do not have special training in cytopathology.

Studies in the United States in the 1990s showed that the sensitivities and specificities of stereotactic-guided core biopsy of non-palpable breast lesions ranged from 70-100% and 85-100%, respectively. To minimise the chance of sampling error in stereotactic biopsy, taking an immediate specimen radiograph to assure the presence of calcium is a routine practice in our hospital. Studies have shown that the presence of calcium on specimen radiographs significantly increases the chance that a histopathological diagnosis will be made. It also assists the pathologist in choosing tissue samples for histological evaluation if multiple cores are obtained. On the other hand, our study shows that a radiograph is not sensitive enough in detecting specimen microcalcifications, causing a high false-negative rate of 47%. This is especially true for microcalcifications that are faint in density to begin with. Another reason is that the microcalcifications are shattered during the machine gun–assisted core biopsy. Other factors associated with unsuccessful calcification retrieval include significant bleeding, patient movement, use of short-throw needles limited by a thin breast and technical error.

As there is a large discrepancy between specimen radiographs and pathological examination in detecting calcium, we recommend reviewing all pathological reports for presence of calcium in cases with negative specimen for calcium in radiographs. The microscopic foci of calcifications that are below the resolution of radiography could be detected histologically. Cases with specimens negative for calcium on radiographs but positive for calcium on pathological examination should be considered positive for calcium in the target lesion.

The percentage of specimens radiographically negative for calcium decreased from up to 10% in the earlier years of the study to less than 1% near the end. Given that the same machine had been used on all specimens, this reflects an overall improvement in the performance of biopsies in our unit. This is likely related to building of expertise of our breast team, together with continuous training, regular auditing, and employment of special techniques such as drop shoulder, rolling, and air gap manoeuvres. The overall percentage of specimens radiographically negative for calcium in the 10-year study period was 3%, which is much lower than 9% in another large-scale 5-year study conducted in the 1990s by a hospital in the United States.

Benign or insufficient stereotactic biopsy results with specimens negative for calcium create a management planning challenge. Repeat biopsy for all these cases is not practical, whilst also causing unnecessary patient anxiety, wasting of resources, and prolonging waiting times for other patients. Besides, detection of specimen calcium cannot be guaranteed in the second biopsy, especially if the microcalcifications are faint or in suboptimal position, such as in the retroareolar region,
high axillary tail, and closed to the chest wall.

In our hospital, the decisions on the management plan for these patients were made in the joint mammogram meeting, attended by radiologists, surgeons, and pathologists specialised in breast disease. During the meeting, cases were analysed individually and holistically. The risk factors (patient history and family history of breast cancer, age), imaging features (mammographic grading, accessibility of microcalcifications), and initial pathological reports (breast pathology and presence of specimen calcium) were reviewed and discussed. Consensus on the management plan was then reached by these specialists. Repeat biopsies or surgery were arranged for high-risk patients while follow-up mammograms (after 6 months, 1 or 2 years) were arranged for lower-risk patients. If there was an interval change in number, extent, or pattern of involvement, or higher radiological grading was detected in follow-up mammograms, intervention could be suggested again by the radiologists.

Of the 32 patients with specimens negative for calcium, eight had a repeat biopsy or surgery (decided in joint mammogram meeting), which resulted in the detection of three additional malignancies. All three of these cases were R3 mammographically. The false-negative rate for malignancy in this group (R3 without calcium in their specimens) was 38%. This finding has huge implications for managing patients with R3 mammographic features and benign initial stereotactic biopsy pathology but with specimen negative for calcium. The discordant benign pathological findings could have resulted from unsuccessful retrieval of target tissue as indicated by lack of calcium. Therefore, re-biopsy to confirm the presence of calcium is strongly recommended for such patients so as to avoid missing the diagnosis of malignancy. For patients with specimens radiographically negative for calcium but in the R2 and R2-3 category, microcalcifications generally remain static. Based on this observation, we recommended follow-up mammograms for this group of patients.

CONCLUSION

Stereotactic-guided core biopsy is a non-invasive and reliable method to sample for breast microcalcifications by histological evaluation. The reliability of the test may be further increased with confirmation of calcium in the specimens by radiography and reviewing the pathological report for the presence of calcium. In patients’ specimens devoid of calcium, we reached a consensus on management plan in our joint mammography meetings. Based on the results of this study, we recommend repeat biopsies to look for the presence of specimen calcium in patients with R3 mammographic features, and follow-up mammography for patients with R2 and R2-3 mammographic features.

REFERENCES

11. Margolin FR, Leung JW, Jacobs RP, Denny SR. Percutaneous imaging-guided core breast biopsy: 5 years’ experience in a community hospital. AJR Am J Roentgenol. 2001;177:559-64. cross ref
Outcome with No Calcium in Stereotactic Breast Biopsy


