Inflammatory Fibroid Polyps Causing Intussusception in Adult Patients: Two Case Reports and Review of Literature Focusing on Radiological Features

CY Lee, MK Yuen
Department of Radiology, Tuen Mun Hospital, Tuen Mun, Hong Kong

ABSTRACT
Inflammatory fibroid polyp is a rare benign lesion originating from the submucosa of the gastrointestinal tract. Inflammatory fibroid polyp in the small bowel commonly presents with intussusception and bowel obstruction. We report two cases of inflammatory fibroid polyps as rare causes of intussusception in adult patients, and review the literature on imaging features of inflammatory fibroid polyps. Due to its well-defined and smooth outline as well as homogeneous appearance and low attenuation on computed tomography, diagnostic difficulty may be encountered as it can be easily missed for a complicated intussusception complex. Lead points must be carefully looked for in adult patients presenting with intussusception.

Key Words: Gastrointestinal tract; Intestinal polyps; Intussusception; Multidetector computed tomography

中文摘要
成人炎性纖維性息肉致腸套疊: 兩宗病例報告和放射影像學特徵的文獻回顧
李芷茵、袁銘強
炎性纖維性息肉源自胃腸道的粘膜下層，是一種罕見的良性病變。小腸中的炎性纖維性息肉通常以腸套疊及腸梗阻起病。本文報告兩名病因為罕見的炎性纖維性息肉的腸套疊成人患者，並回顧炎性纖維性息肉影像學特徵的文獻。由於炎性纖維性息肉分界清晰、輪廓光整、電腦斷層掃描圖像性質均勻、低衰減，診斷可能有困難；而且可能因解剖輔助的腸套疊體部而漏診。診療腸套疊的成人患者必須仔細尋找導引點。

INTRODUCTION
Inflammatory fibroid polyp (IFP) is a rare, benign lesion originating from the submucosa of the gastrointestinal tract. It is most often found in the stomach, followed by the small bowel, and, rarely, in the large bowel, duodenum, gallbladder, and oesophagus. Clinical symptoms may vary according to the site and size of the lesion. The most common acute presentation of an
Intussusception by Inflammatory Fibroid Polyps

IFP in the small bowel is intussusception with bowel obstruction.\(^1\,^2\) We report two cases of IFPs as rare causes of intussusception in adult patients, and review the literature on imaging features of IFPs, with special focus on computed tomography (CT).

CASE REPORTS

Case 1

In May 2011, a 56-year-old Chinese woman, with a medical history of hypertension and hysterectomy, initially presented with diffuse abdominal pain for the past few weeks. The abdominal pain was associated with vomiting and diarrhoea; however, there were no systemic symptoms of fever, chills, or rigors.

Physical examination revealed a vague abdominal mass in the right lower quadrant of the abdomen with tenderness and guarding on palpation. Laparoscopy, therefore, was performed for suspected acute appendicitis with abdominal mass. A normal appendix was found on laparoscopy; however, inflamed ascending colon wrapped by omentum without obvious mural mass or serosal lesion was also noted. Diagnosis of diverticulitis of the ascending colon was made. Laparoscopic adhesiolysis and appendicectomy were performed. Histological examination of the appendix revealed incidental carcinoid tumour. The diverticulitis was treated with antibiotics. Subsequently, her abdominal pain subsided and she was discharged.

She was readmitted 1 day after discharge for colicky periumbilical abdominal pain, vomiting, and diarrhoea. Once again, she was afebrile and haemodynamically stable. Physical examination revealed tenderness over the abdomen. Abdominal radiograph did not reveal dilated bowel loops. White cell count was mildly raised to 13.4 x 10\(^9\) /l (reference range, 3.9-10.7 x 10\(^9\) /l). Contrast-enhanced CT showed multiple concentric rings in the proximal colon, with invagination of transverse colon into the ascending colon, caecum and terminal ileum, compatible with intussusception (Figure 1). A 4-cm round well-defined, homogeneous, non-enhancing, low-density intraluminal lesion of 16 Hounsfield Unit (HU) was seen near the splenic flexure as a lead point (Figure 2). There was no internal calcification or fat density.

Emergency laparotomy confirmed ileocolic intussusception caused by a submucosal mass in the terminal ileum about 15 cm from the ileocaecal valve, measuring 4 cm x 5 cm x 5 cm, which was invaginated into the distal transverse colon near the splenic flexure. The segment of ileum with intussusception and the small bowel tumour were resected. Histopathological examination revealed IFP.

Case 2

In August 2012, a 63-year-old Chinese woman with good past health presented with abdominal pain shifting from the epigastric region to the lower quadrant for a few days. She had no systemic symptoms of fever, chills, or rigors.

On admission, she was afebrile and haemodynamically stable. Physical examination revealed generalised abdominal tenderness. Laboratory tests including white
blood cell count, and liver and renal function tests were normal.

Oesophagastroduodenoscopy was performed which showed chronic gastritis. Abdominal radiograph showed dilated small bowel loops. Contrast-enhanced CT showed multiple concentric rings in part of the ileum in the right lower quadrant compatible with intussusception. A 2.5-cm round well-defined, homogeneous, non-enhancing, low-density intraluminal lesion of 16 HU was seen as a lead point (Figures 3 and 4). There was no internal calcification or fat density.

Emergency laparotomy confirmed ileoileal intussusception caused by a submucosal mass at about 1 m from the ileocaecal valve measuring 3 cm x 2 cm x 2 cm. An oedematous small bowel segment of around 10 cm was noted adjacent to the point of intussusception. The segment of ileum with intussusception and the small bowel tumour were resected. Histopathological examination revealed IFP.

DISCUSSION

IFPs were first described by Vanek in 1949 as a “gastric submucosal granuloma with eosinophilic infiltration”. Various terms have been used to refer to this lesion, including gastric eosinophilic submucosal granuloma, Vanek’s tumour, eosinophilic granuloma, haemangiopericytoma, myxoma, inflammatory pseudotumour, fibroma with eosinophilic infiltration, and polypoid myoendothelioma. The term “inflammatory fibroid polyp” was introduced in 1953 by Helwig and Ranier, and is now widely used and accepted.

The aetiology of IFPs is uncertain. Various aetiologies have been proposed, including allergic, neural (hyperplasia), muscular, inflammatory (in the form of granulation tissue), and genetic. Macroscopically, IFPs are submucosal, sessile or pedunculated polypoid lesions, usually solitary and are rarely multiple. Histologically, IFPs consist of masses of loose fibrous connective tissue arising in the submucosa, with the presence of an inflammatory infiltrate often dominated by eosinophils. Immunohistochemistry is the definitive complementary study. The spindle cell component of IFPs shows almost 100% positivity for CD34 and vimentin.

Intussusception in adults is frequently caused by serious underlying disease, with 70% to 90% of cases having a demonstrable cause based on discharge diagnosis or surgical results. Therefore, preoperative imaging is important for diagnosis and identifying the underlying cause of adult intussusception before proceeding to surgery. One benign cause of intussusception with or without small bowel obstruction in small bowels is IFP.

In the 1990s, the radiological appearance of IFPs was reported to be non-specific. CT was performed in only one case and did not furnish any unique diagnostic information. As there is increasing use of cross-sectional imaging to determine the underlying cause and lead point of intussusception, more cases...
of IFP causing intussusception with CT features were reported. However, no particular literature focused on or summarised the imaging features of IFP itself. Therefore, we performed a literature search of PubMed databases and Google scholar using the search terms “inflammatory fibroid polyp” and “intussusception” for articles in English published between January 1990 and August 2013, focusing on review of imaging, in particular CT features of IFPs causing intussusception.

A total of 62 articles involving 76 cases of intussusception due to IFPs were identified. Together with our two cases, a total of 78 cases were included. Presenting age ranged from 17 to 78 years (mean, 50.6 years). Most of the lesions measured approximately 3 to 4 cm in size. There were two rare, larger ones, measuring up to 11 cm.9,10 Regarding the site of the lesions, 57 tumours were located in the ileum, 19 in the jejunum, and 2 in the colon.

In the past, IFPs with intussusceptions were commonly diagnosed by endoscopy or laparotomy without preoperative imaging, due to clinical emergency. Among the 78 cases, 27 (35%) were diagnosed without imaging. Fluoroscopic contrast studies (enteroclysis) were also used previously to identify the site and cause of intestinal obstruction. Barium enema examination, now rarely performed in acute situations, can demonstrate a ‘cup-shaped’ filling defect, which is a characteristic finding of intussusception. Luminal defect can be seen if there is underlying mass as a lead point. Among the 78 cases, fluoroscopic contrast studies had been performed in only six (8%) cases.

Ultrasonography is a non-invasive tool commonly used to demonstrate intussusception. Classical imaging features include the 'crescent-in-doughnut sign',11 and the 'pseudokidney sign'.12 Ultrasonography had been performed in 11 (14%) of the 78 cases. However, despite the non-invasiveness of ultrasonography, studies stated that ultrasound was mostly reliable in paediatric cases. CT is mandatory in adults to make the diagnosis, determine the underlying cause, find a lead point, and evaluate complications.13 It is also the most sensitive technique for diagnosis and investigation of the location, type of lesion, any vascular compromise, and extent of the tumour.13 Abdominal CT is helpful in distinguishing between an intussusception with a lead point and one without a lead point. An intussusception with a lead point will present with a greater cross-sectional diameter, longer length of intussusception, and may be associated with proximal bowel obstruction.14 Identification of a

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex</th>
<th>Age (years)</th>
<th>IFP location</th>
<th>IFP size (cm)</th>
<th>Shape</th>
<th>Margin / outline</th>
<th>Density in contrast study (HU if available)</th>
<th>Homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bays et al17</td>
<td>F</td>
<td>54</td>
<td>Ileum</td>
<td>3.5</td>
<td>-</td>
<td>Smooth</td>
<td>Soft-tissue density</td>
<td></td>
</tr>
<tr>
<td>Bays et al17</td>
<td>M</td>
<td>17</td>
<td>Jejunum</td>
<td>3</td>
<td>Round</td>
<td>Smooth</td>
<td>Low fluid to soft-tissue density</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Coulier et al14</td>
<td>M</td>
<td>58</td>
<td>Ileum</td>
<td>6</td>
<td>Pear-shaped</td>
<td>Smooth</td>
<td>Low fluid density</td>
<td></td>
</tr>
<tr>
<td>Dicle et al16</td>
<td>M</td>
<td>22</td>
<td>Ileum</td>
<td>-</td>
<td>-</td>
<td>Well-defined</td>
<td>Low fluid to soft-tissue (17 HU)</td>
<td></td>
</tr>
<tr>
<td>El Hajj and Sharara19</td>
<td>F</td>
<td>52</td>
<td>Jejunum</td>
<td>3.5</td>
<td>Round</td>
<td>Well-defined</td>
<td>Soft-tissue</td>
<td></td>
</tr>
<tr>
<td>Gara et al20</td>
<td>F</td>
<td>76</td>
<td>Ileum</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td>Low fluid density</td>
<td></td>
</tr>
<tr>
<td>Korkmaz et al17</td>
<td>M</td>
<td>30</td>
<td>Jejunum</td>
<td>3</td>
<td>Round</td>
<td>Well-defined</td>
<td>Soft-tissue density</td>
<td></td>
</tr>
<tr>
<td>Lasithiotakis et al22</td>
<td>F</td>
<td>52</td>
<td>Ileum</td>
<td>-</td>
<td>Round</td>
<td>Smooth</td>
<td>Low fluid density</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Present study (case 1)</td>
<td>F</td>
<td>56</td>
<td>Ileum</td>
<td>5</td>
<td>Round</td>
<td>Well-defined, Smooth</td>
<td>Low fluid density (16 HU), non-enhancing</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Present study (case 2)</td>
<td>F</td>
<td>63</td>
<td>Ileum</td>
<td>3</td>
<td>Round</td>
<td>Well-defined, Smooth</td>
<td>Low fluid density (16 HU), non-enhancing</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Miyata et al23</td>
<td>F</td>
<td>64</td>
<td>Jejunum</td>
<td>4.5</td>
<td>-</td>
<td>Smooth</td>
<td>Low fluid to soft-tissue attenuation</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Nonose et al24</td>
<td>F</td>
<td>56</td>
<td>Ileum</td>
<td>4.5</td>
<td>Round</td>
<td>Smooth</td>
<td>Soft-tissue density</td>
<td></td>
</tr>
<tr>
<td>Patel et al15</td>
<td>F</td>
<td>64</td>
<td>Jejunum</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>Low fluid to soft-tissue attenuation</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Rehman et al12</td>
<td>F</td>
<td>46</td>
<td>Jejunum</td>
<td>11</td>
<td>Round</td>
<td>Smooth</td>
<td>Low fluid to soft-tissue attenuation</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Ruffolo et al20</td>
<td>F</td>
<td>44</td>
<td>Ileum</td>
<td>4</td>
<td>Round</td>
<td>Smooth</td>
<td>Medium soft-tissue attenuation</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Savargaonkar et al27</td>
<td>F</td>
<td>42</td>
<td>Ileum</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Yoon et al15</td>
<td>M</td>
<td>39</td>
<td>Ileum</td>
<td>2.5</td>
<td>Round</td>
<td>Smooth</td>
<td>High soft-tissue attenuation</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Zagier et al25</td>
<td>M</td>
<td>36</td>
<td>Ileum</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CT = computed tomography; IFP = inflammatory fibroid polyp.
lead mass that is separated and distinct from bowel loops at CT scan serves as a reliable radiological indicator of intussusception with a lead point and has the potential to reduce the number of unnecessary surgeries. In one recent report, removal of the IFP was performed by double-balloon enteroscopy instead of surgery.

Among the 78 cases, 39 (50%) had undergone preoperative CT. Interestingly, the lead point was mentioned in the CT findings or seen in CT images in less than half of the cases (n=18/39, 46%). The CT findings are summarised in the Table. In both of our cases, the IFPs were seen as lead points within the intussusceptum. Both had smooth and round outlines, homogeneous and low attenuation, without significant contrast enhancement. There was no internal calcification. These findings are consistent with those from previous studies. Dicle et al reported the low Hounsfield Unit of IFP (17 HU) and suggested that this was related to the high water content of these tumours. We also demonstrated similar findings in our cases. We propose that due to the low attenuation similar to that of fluids and homogeneous appearance, IFPs are easily missed within the complicated intussusception complex, causing difficulty in detection.

In the 1990s, when CT was not used frequently, IFPs were often mistaken as other benign or malignant mural lesions. We believe that lack of internal fat or calcification and lack of contrast enhancement may help in differentiating IFPs from other benign or malignant mural lesions that commonly cause intussusception such as leiomyomas, lipomas, or metastases. The smooth outline, homogeneity in attenuation as well as lack of adjacent inflammatory or infiltrative changes of IFPs may also be feasible in differentiating from malignant or inflammatory causes of intussusception.

Magnetic resonance imaging (MRI) was used in one of our cases to demonstrate intussusception due to IFP, by revealing bowel-in-bowel appearance and an intermediate, intense-signal polyloid mass as the lead point on breathing-independent HASTE (half-Fourier-acquired single-shot turbo spin echo) images. MRI is also believed to be useful in the diagnosis and identification of the lead point. Further studies or reports are required to characterise the MRI features of IFPs in future.

CONCLUSION
IFP is a rare benign lesion in the gastrointestinal tract. When present in the small bowel, it commonly causes intussusception with bowel obstruction, and clinically, may be confused with neoplastic polyps. Due to its well-defined and smooth appearance as well as homogeneous and low attenuation on CT, diagnostic difficulty may be encountered as it can be easily missed within the complicated intussusception complex. Lead points must be carefully looked for in adult patients presenting with intussusception.

REFERENCES
Intussusception by Inflammatory Fibroid Polyps