Computer-assisted Diagnosis of Pulmonary Embolism in Multidetector Computed Tomography

M Zimmermann, M Das, CK Kuhl, S Keil
Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany

ABSTRACT

Objective: To assess the performance of a computer-assisted diagnosis (CAD) software in detecting pulmonary embolism (PE) on multidetector computed tomography (MDCT).

Methods: MDCT angiography data of 100 consecutive patients with clinically suspected PE were retrieved. Diagnosis (initial read) had been made in consensus by two out of 10 radiologists. The original data were transferred to a CAD software, and two other experienced chest radiologists reviewed all CAD markings to determine the ground truth for CAD and the standard of reference (final diagnosis) in consensus. The markings were categorised as true or false positive. For true positive, the involved vessel segment was classified as lobar, segmental, and subsegmental. Sensitivity, specificity, and negative and positive predictive values of initial and CAD diagnoses were compared.

Results: In the initial read, 27 and 73 patients were positive and negative for PE, respectively. Based on the standard of reference, five (6.9%) of the 73 patients negative for PE were determined to be false negative and the remaining 68 were true negative. The CAD software marked 86 and 14 patients with and without pulmonary emboli, respectively. Based on the standard of reference, 26 were true positive, 57 were false positive, 11 were true negative, and 6 were false negative. The CAD software detected pulmonary emboli in five (6.9%) of 73 patients who were initially read as negative, but failed to detect pulmonary emboli in six (22.2%) of 27 patients who were initially read as positive. Respectively for the initial read and CAD software, sensitivity was 84% and 81%, specificity was 100% and 16%, positive predictive value was 100% and 31%, and negative predictive value was 93% and 65%.

Conclusions: The CAD software can be a second reader but should not be used as a stand-alone tool for diagnosis; all MDCT should be reviewed by a radiologist.

Key Words: Diagnosis, computer-assisted; False negative reactions; Multidetector computed tomography; Pulmonary embolism; Sensitivity and specificity

中文摘要

應用多排電腦斷層掃描輔助診斷肺栓塞
M Zimmermann, M Das, CK Kuhl, S Keil

目的：評估在多排電腦斷層掃描（MDCT）中應用電腦輔助診斷（CAD）軟件檢測肺栓塞（PE）的性能。
INTRODUCTION

Clinical presentation of pulmonary embolism (PE) can range from asymptomatic to immediate death. PE can occur rapidly and unpredictably and is sometimes difficult to diagnose. Untreated symptomatic PE is associated with a high mortality and thus prompt and accurate diagnosis is needed.\(^1\) Computed tomography (CT) angiography is the first-line imaging modality to detect PE.\(^2\)\(^-\)\(^4\) It can also detect other thoracic pathologies such as pleural effusion, pulmonary infiltration, and atelectasis. Multidetector CT (MDCT) increases sensitivity and specificity of PE detection, especially for smaller pulmonary artery branches,\(^5\)\(^-\)\(^7\) due to its fast subsecond acquisition, thin collimation, and high spatial resolution.

The Prospective Investigation of Pulmonary Embolism Diagnosis Group recommends the use of CT angiography to detect PE in patients positive for D-dimers with a low-to-moderate clinical probability, and in patients with a high clinical probability.\(^3\)\(^,\)\(^8\)\(^,\)\(^9\) According to the British Thoracic Society, additional diagnostic test is not necessary after a negative MDCT and no anticoagulation is needed.\(^10\)

In MDCT, thin collimation with 400-800 sections leads to a considerable increase in image data. This may lead to false-negative diagnosis under emergency conditions.\(^11\)\(^,\)\(^12\) Computer-assisted diagnosis (CAD) can reduce false-negative diagnosis, especially in patients with severe pre-existing cardiorespiratory disease.\(^13\)\(^,\)\(^14\) Nonetheless, CAD has a highly variable sensitivity of 31% to 92% and specificity of 80% to 92%,\(^15\)\(^-\)\(^17\) although it has a second-reader benefit for detection of individual emboli.\(^16\)\(^,\)\(^17\) This study aimed to assess the performance of a CAD software in detecting PE and the role of CAD as a second reader.

METHODS

Institutional review board approval was waived for this study. The research protocol was conducted in compliance with Declaration of Helsinki. We retrospectively reviewed CT data of 100 consecutive patients (mean ± standard deviation [SD] age, 60.7 ± 18.3 years) with clinically suspected PE who underwent MDCT angiography of the pulmonary arteries according to the standard protocol.\(^18\) Not all patients had been examined for the blood D-dimer level. MDCT angiography was performed on a 64-detector-row CT through a cranio-caudal direction during inspiratory breath-hold (Table 1). The diagnosis (‘initial read’) had been made in consensus by two out of 10 radiologists with ≥3 years of experience.

The original CT data were retrieved and transferred to a standard workstation with a viewing software and a CAD software (Siemens Medical Solutions, Malvern [PA], USA). Two other experienced chest radiologists reviewed all CAD markings to determine the ground truth for CAD and the standard of reference (final diagnosis) in consensus. The markings were categorised as true or false positive. For true positive, the involved vessel segment was classified as lobar, segmental, and subsegmental.

The CAD software ran the following key steps: lung
segmentation, candidate generation, feature extraction, and false-positive filtering reduction. Background noise (for evaluation of image quality) was based on the attenuation (in Hounsfield units) at a region of interest of approximately 1 cm² within the surrounding air in front of the patient.

Performance of the CAD software and initial radiologists in each patient was compared with the standard of reference (final diagnosis). Sensitivity, specificity, and positive and negative predictive values and their 95% confidence intervals (CI) were calculated. A p value of <0.05 was considered statistically significant.

RESULTS
The mean value of image noise was 12.2 (SD, 2.8; range, 7-19) Hounsfield units. There was no effective limitation due to varying image quality. In the initial read, 27 and 73 patients were positive and negative for PE, respectively. Based on the standard of reference, five (6.8%) of the 73 patients negative for PE were determined to be false negative and the remaining 68 were true negative. The CAD software marked 86 and 14 patients with and without pulmonary emboli, respectively. Based on the standard of reference, 26 were true positive, 57 were false positive, 11 were true negative, and 6 were false negative (Table 2).

Respectively for the initial read and CAD software, sensitivity was 84% (95% CI = 67-95%) and 81% (95% CI = 64-93%), specificity was 100% (95% CI = 95-100%) and 16% (95% CI = 8-27%), positive predictive value was 100% (95% CI = 95-100%) and 31% (95% CI = 22-42%), and negative predictive value was 93% (95% CI = 85-98%) and 65% (95% CI = 38-86%).

The CAD software detected pulmonary emboli in five (6.9%) of 73 patients who were initially read as negative. The emboli were located at the subsegmental level of the right inferior (n = 1), left inferior (n = 1) and left superior (n = 1) lobe as well as the segmental level of the right inferior (n = 1) and left superior (n = 1) lobe (Figures 1 and 2). The patient with a segmental PE in the left inferior lobe also showed signs of right ventricular dysfunction (Figure 3). The other four patients were haemodynamically stable with absence of morphological features of right heart failure; they did not receive any treatment.

The CAD software failed to detect pulmonary emboli in 6 (22.2%) of 27 patients who were initially read as positive. The emboli were located at the central (n = 3), segmental (n = 2), and subsegmental (n = 1) levels. There were a mean of 3.8 false-positive CAD markers per patient, mainly caused by vessel walls, pericardium, pulmonary consolidation, or the lobe of the azygous vein (Figure 4).

DISCUSSION
PE may result in morbidity and mortality if left untreated; prompt and accurate diagnosis is necessary. Pulmonary MDCT angiography has been the first-line imaging modality for patients with suspected PE. Nonetheless, smaller pulmonary emboli especially at segmental and subsegmental arteries can be easily missed under emergency conditions owing to the large amount of data acquired by MDCT with thin collimation. The use of a CAD software as a second reader improves the sensitivity for detection of individual pulmonary emboli that may be missed by radiologists, especially in segmental and subsegmental arteries.

Patients diagnosed with PE should immediately be started on intravenous anticoagulation unless

Table 1. Protocols of multidetector computed tomography.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine concentration (mg/ml)</td>
<td>300</td>
</tr>
<tr>
<td>Contrast material volume (ml)</td>
<td>148</td>
</tr>
<tr>
<td>Flow rate (ml/s)</td>
<td>4.9</td>
</tr>
<tr>
<td>Iodine delivery rate (gl/s)</td>
<td>1.47</td>
</tr>
<tr>
<td>Total amount of iodine (g)</td>
<td>44.4</td>
</tr>
<tr>
<td>Injection duration (s)</td>
<td>30.2</td>
</tr>
<tr>
<td>Tube voltage (kVp)</td>
<td>120</td>
</tr>
<tr>
<td>Effective tube current-time product (effective mAs)</td>
<td>120 / 160</td>
</tr>
<tr>
<td>Slice collimation (mm)</td>
<td>64 x 0.6</td>
</tr>
<tr>
<td>Pitch</td>
<td>1 / 0.9</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>1</td>
</tr>
<tr>
<td>Reconstruction increment (mm)</td>
<td>0.7</td>
</tr>
<tr>
<td>Reconstruction kernel</td>
<td>Siemens B30f</td>
</tr>
<tr>
<td>Window width (Hounsfield units)</td>
<td>400</td>
</tr>
<tr>
<td>Window centre (Hounsfield units)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 2. Performance of initial radiologists and computer-assisted diagnosis compared with the standard of reference.

<table>
<thead>
<tr>
<th>Standard of reference</th>
<th>No. of patients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial radiologists</td>
<td>Computer-assisted diagnosis</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>68</td>
</tr>
</tbody>
</table>
Computer-assisted Diagnosis of Pulmonary Embolism

Figure 1. Multidetector computed tomography with computer-assisted diagnosis showing a patient with multiple central, lobar, and segmental pulmonary emboli (arrows).

Figure 2. Multidetector computed tomography with computer-assisted diagnosis showing a segmental pulmonary embolus of the lingula that was missed in the initial read (arrows). There is a small pleural effusion and atelectasis dorsobasally.
contraindicated to decrease the thromboembolic burden. Hospitalisation with bed rest for 24 to 48 hours is recommended.1 Nonetheless, it remains controversial about the necessity for treatment of small emboli at a subsegmental level.23 Small peripheral PE may be clinically relevant in patients with restricted
cardiorespiratory reserve, and may lead to chronic thromboembolic pulmonary hypertension if untreated.24 The presence of small peripheral emboli suggests the presence of a venous thrombosis in the lower extremities or pelvis, and thus an aggressive work-up. Patients with asymptomatic isolated subsegmental pulmonary emboli should be treated.12

The CAD software can detect missed emboli but should not be used as a stand-alone tool for diagnosis. The algorithm of this software was not intended to detect central PE, hence the relatively high rate (18.8\%) of false negative. The mean of 3.8 false-positive markers per patient is in line with that reported in one study.17

The main limitation of our study was that secondary disorders that might have led to false negative initially were not analysed. Data were analysed retrospectively and may not represent those obtained during daily routine imaging and reading. In addition, the two experienced radiologists who reviewed the CAD markers provided no absolute confidence in CAD marker interpretation.

CONCLUSION

CAD software may detect PE that are initially missed, but it also produces false-negative and false-positive results. It should not be used as a stand-alone tool for diagnosis; all MDCT should be reviewed by a radiologist.

REFERENCES

20. Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V. Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: prospective randomized study. Radiology. 2007;245:577-83.37

23. Yoo HH, Queluz TH, El DiB R. Anticoagulant treatment for subsegmental pulmonary embolism. Cochrane Database Syst Rev. 2014;4:CD010222.40