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ABSTRACT
Thyroid nodules are prevalent in the general population. Distinguishing benign and malignant thyroid nodules 
is a clinical challenge. Although ultrasonography is commonly used for the assessment of thyroid nodules, 
previous studies have found that its usefulness is controversial. Therefore, there is a need to assess the clinical 
value of ultrasonography reported in the literature. This article reviews the literature on the clinical value 
of greyscale ultrasonography, colour and power Doppler ultrasonography, and ultrasound elastography in 
differentiating benign and malignant thyroid nodules.
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中文摘要

甲狀腺癌超波診斷的最新進展

FN Baig、廖玉華、葉社平、羅嘉慧、應天祥

甲狀腺結節在一般人口中是很普遍的。區分良性和惡性甲狀腺結節是一個臨床挑戰。雖然超聲波檢

查常用於評估甲狀腺結節，但以往的研究結果存在爭議。因此，有必要評估以往文獻報導超聲波檢

查的臨床價值。本文回顧灰度超聲波、彩色和能量多普勒超聲波，以及超聲波彈性成像在鑑別良性

和惡性甲狀腺結節中的臨床價值。

INTRODUCTION
Thyroid nodules are discrete lesions found in 20% to 
76% of the general population. There has been a 2- 
to 3-fold increase in the incidence of thyroid cancer 
over the past 30 years.1 Thyroid ultrasonography is 
the first-line imaging investigation for identifying and 

characterising thyroid nodules. Thyroid ultrasonography 
has various advantages, such as high availability, non-
invasiveness, relative low cost, and excellent temporal 
and spatial resolution. Doppler ultrasonography and 
ultrasound elastography can evaluate the vascularity 
and stiffness of thyroid nodules, respectively.2 How-
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ever, operator dependency is a major limitation of 
ultrasonography. Ultrasonography is important in the 
assessment of the malignancy risk of thyroid nodules, 
and in the selection of nodules for fine-needle aspiration, 
cytology, and treatment.3 Ultrasonography also helps in 
guiding fine-needle aspiration because of its real-time 
capability. Most thyroid nodules are incidental findings, 
but their risk of malignancy correlates well with the 
findings of subsequent ultrasonography.4

In clinical settings, thyroid ultrasonography is indi-
cated in the following conditions: palpable mass in 
the anterior neck, dysphagia, dyspnoea, dysphonia, 
persistent cough (not related to cold), palpitation, 
cardiac arrhythmia, monitoring of treatment of 
thyroid disease, and postoperative follow-up.3 In 
this article, we review the clinical value of greyscale 
ultrasonography (GSU), Doppler ultrasonography, and 
ultrasound elastography in the differentiation of benign 
and malignant thyroid nodules. We also discuss the 
application of microvascular imaging techniques in the 
Doppler ultrasound assessment of thyroid nodules.

GREYSCALE ULTRASONOGRAPHY
GSU is a useful imaging technique for assessing the 
morphology of the thyroid gland and the pathology of 
thyroid nodules. In general, the normal thyroid gland 
has a homogeneous echotexture. It is hyperechoic 
compared to the adjacent sternocleidomastoid muscle. 
In adult humans, the thyroid volume ranges from 5 cm3 

to 20 cm3; the volume varies with sex, age, body weight, 
and other physiological and environmental factors.5

Each thyroid lobe has a globular appearance (height 3-4 
cm, width 1-1.5 cm, depth 1 cm) and is interconnected 
by the isthmus, which is identified as a homogeneous 
structure (height 0.5 cm, depth 2-3 cm) anterior to the 
trachea. The pyramidal lobe is usually not visible on 
ultrasonograms of adults but can be observed on those 
of young children. The oesophagus is located slightly 
to the left; the oesophageal lumen is air and fluid-filled, 
with the sonographic appearance of a hyperechoic 
centre surrounded by a hypoechoic rim due to the 
presence of oesophageal musculature. Together, these 
features give the oesophagus a characteristic ‘bull’s eye’ 
shape on greyscale ultrasonogram. Sternocleidomastoid 
and strap muscles are located on the anterior aspects of 
the thyroid gland. The common carotid artery is situated 
lateral to the thyroid lobe on both sides. Further lateral 
to the common carotid artery is the internal jugular 
vein. A patent internal jugular vein is compressible 
by the transducer and can be distended by a Valsalva 
manoeuvre for better visualisation. Other manoeuvres, 
such as swallowing, can be used for identification of 
the oesophagus (Figures 1 and 2). For scanning of large 
goitres, panoramic ultrasound can be used to obtain 
images with a large field of view (Figure 3).

Malignant features of thyroid nodules such as micro-
calcification, absent halo sign, heterogeneity, irregular 

Figure 1. Transverse greyscale 
ultrasonogram showing a normal 
left thyroid lobe and adjacent 
anatomical structures.
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border, and height-to-width ratio of >1 can be identified 
using GSU; GSU can also be used to differentiate 
cystic from solid nodules.6,7 However, the sensitivity 
and specificity of GSU vary considerably, from 52% to 
97% and from 26% to 83%, respectively.8 Therefore, a 
clear understanding of the common ultrasound features 
of benign and malignant nodules is essential in the 
ultrasonography of thyroid nodules.

Features of Benign Thyroid Nodules on 
Greyscale Ultrasonography
Cystic Component
Thyroid nodules with a greater cystic proportion are 
usually benign, as are spongiform (multiple cystic 
components in Figure 4) nodules; however, not every 
cystic nodule is benign. Papillary thyroid cancer tends 
to appear cystic when it is large.9

Comet Tail Sign
The comet tail sign is highly specific for benign thyroid 
nodules and represents colloid lesions. The overall 
sensitivity, specificity, and accuracy of this sign are 
74%, 83%, and 81%, respectively.10 There is a high 
similarity between the appearance on ultrasonography 
of colloid and that of small punctate calcifications (a 
highly specific feature of papillary thyroid cancer) 
because both are hyperechoic. However, a distinction 
can be made by noticing the presence of the comet tail 
sign behind the colloid. Punctate calcifications do not 
exhibit the comet tail sign (Figure 5).11

Figure 2. Longitudinal greyscale 
ultrasonogram showing the left lobe 
of a normal thyroid gland.

Figure 3. Panoramic greyscale ultrasonogram demonstrating an 
extended field of view in a longitudinal scan of a benign nodule 
(arrows) in the left lobe of a thyroid gland.

Figure 4. Transverse greyscale ultrasonogram showing a benign 
thyroid nodule with spongiform appearance (arrows).
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Regular Margins
In comparison with malignant thyroid nodules which 
usually have irregular margins (55.6%) due to tumour 
infiltration and stromal changes, benign thyroid nodules 
tend to have well-defined borders (83.3%), possibly 
because they are localised and do not proliferate in an 
uneven manner (Figure 6).12

Peripheral Halo Sign
The peripheral halo sign is common in benign thyroid 
nodules. The peripheral halo sign appears thin and 
complete, with hypoechoic rims surrounding the 
nodule (Figure 7). The peripheral halo sign is possibly 
associated with the rapid but controlled growth of 
thyroid neoplastic cells, which causes compression of 

the adjacent thyroid parenchyma.13 A halo may also 
appear in malignant nodules; however, these halos are 
usually incomplete, possibly owing to the uneven and 
uncontrolled cell growth of thyroid cancer cells. In most 
cases, a halo sign is absent in malignant thyroid lesions.14

Multinodularity
Multinodularity is commonly observed in benign thyroid 
lesions (Figure 8). Malignant thyroid nodules are usually 
solitary.13 However, the risk of thyroid cancer with 
multinodularity should not be underestimated.15 Benign 
and malignant thyroid nodules may be found in the 
same gland. It has previously been reported that 10% to 
20% of papillary thyroid cancer are multicentric.16

Figure 7. Transverse greyscale ultrasonogram showing a benign 
thyroid nodule with hypoechoic peripheral halo sign in the left 
thyroid lobe (arrowhead).

Figure 8. Longitudinal greyscale ultrasonogram showing a 
multinodular goitre in a thyroid lobe. Multiple nodules within the 
thyroid gland are indicated by arrows.

Figure 5. Transverse greyscale ultrasonogram showing a benign 
thyroid nodule with colloid depositions which are shown as 
hyperechoic foci with comet tail signs (arrowhead).

Figure 6. Longitudinal greyscale ultrasonogram showing a benign 
thyroid nodule which is isoechoic when compared with adjacent 
normal thyroid parenchyma and has well-defined, regular margins 
(arrows).
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Features of Malignant Thyroid Nodules on 
Greyscale Ultrasonography
Echogenicity
Solid malignant tumours, such as papillary thyroid 
cancer, are packed with denser material, such as 
collagen, and have higher interstitial fluid pressure when 
compared with normal thyroid follicles. This higher 
interstitial pressure may weaken the acoustic impedance 
at the interface and decrease ultrasound reflection that 
results in the hypoechoic appearance of malignant 
thyroid nodules (Figure 9).17

Irregular Margins
Malignant thyroid nodules tend to have irregular 
margins.18 This could be because thyroid tumour cells 
proliferate in an uneven manner, leading to the irregular 
nodular margins seen on ultrasonography (Figure 9).13

Microcalcification
Microcalcifications appear as hyperechoic foci with-
out acoustic shadows on GSU. The presence of micro-
calcifications within thyroid nodules is highly associated 
with thyroid malignancy. Ultrastructural investigation 
of thyroid nodules with microcalcifications shows 
thickening of the base lamina of neoplastic papillae 
followed by calcification, collagen production by 
necrotic tumour cells, and formation of ‘psammoma 
bodies’ (Figure 10).19

Aspect Ratio Greater than 1 or Taller-than-wide 
Appearance
An aspect ratio (i.e. anteroposterior diameter relative to 
transverse diameter) of >1 is associated with malignant 
thyroid nodules.20 The presence of an aspect ratio >1 
raises the suspicion of thyroid malignancy, and papillary 
thyroid cancer tends to demonstrate taller-than-wide 
appearance.21 It has been suggested that the tall cell 
variants of papillary thyroid cancer might be associated 
with the taller-than-wide appearance of this kind of 
tumour on ultrasonography (Figure 11).22

Although GSU can be used to accurately identify  
suspicious features for malignancy (i.e. micro-
calcification, irregular margins, hypoechogenicity, 
and taller-than-wide appearance), the sensitivity and 
specificity of GSU vary considerably.8 Moreover, 
these findings are based on subjective and qualitative 
assessments and vulnerable to intra- and inter-observer 
variability. The American Thyroid Association suggests 
that no single or combination of GSU features are 
sensitive or specific enough to detect all malignant 
thyroid nodules.13,23 The diagnostic performance of 
various GSU features conferring malignancy among 
available studies in the literature are compared in Table 
1.7,12,20,22-30

Figure 9. Transverse greyscale ultrasonogram showing a 
hypoechoic malignant thyroid nodule in the right thyroid lobe 
(arrows). The nodule appears hypoechoic when compared with 
the adjacent thyroid parenchyma and has ill-defined, irregular 
borders.

Figure 10. Longitudinal greyscale ultrasonogram showing a 
hypoechoic malignant thyroid nodule with microcalcification 
(arrow) at the peripheral region of the nodule.

Figure 11. Transverse greyscale ultrasonogram showing a 
malignant nodule in the right thyroid lobe with an aspect ratio 
(anteroposterior diameter relative to transverse diameter) of >1.
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DOPPLER ULTRASOUND
Colour and power Doppler ultrasonography have been 
used in the detection and assessment of the vasculature 
in normal structures and pathologies.14 The usefulness of 
Doppler ultrasonography to predict thyroid malignancy 
by assessing thyroid nodular vascularity remains 
controversial.24,31,32 Some studies have claimed that 
hypervascularity is an independent predictor of thyroid 
cancer.14,33 Khadra et al34 reported that hypervascularity 
may indicate a high risk of thyroid malignancy when 
combined with suspicious GSU features in thyroid 
nodules with indeterminate cytology. However, they 
also claimed that hypervascularity itself was not an 
independent predictor of thyroid malignancy.34 Some 
studies have suggested that central vascularity is a 
feature for thyroid malignancy, whereas benign thyroid 
nodules tend to have peripheral vascularity (Figure 
12).23,35-38 However, other studies have noticed a 
higher association of central vascularity with benignity 
rather than malignant status of thyroid nodules.31,39,40 
Shah et al41 suggested that, when making a decision 
for thyroidectomy, intranodular vascularity on 
ultrasonography should not be used as an independent 

parameter to determine the risk of malignancy in 
patients with an atypical cytology result.41 Some studies 
have found that the vascular pattern of the thyroid 
nodule (avascularity, peripheral and central vascularity) 
was useful in predicting thyroid malignancy,35,36,42 
whereas others have found that vascular pattern was not 
useful in predicting malignancy.39,43-45 The conflicting 
findings in these studies likely arose because the 
nodular vascularity was qualitatively assessed by visual 
perception and thus would be prone to intra- or inter-
observer variation.46

It has been reported that using objective and quantitative 
measurement of nodular vascularity would allow a more 
accurate prediction of thyroid malignancy.47 In a recent 
study, Baig et al37 proposed a novel method that used 
an automated computer-aided approach for regional 
segmentation of thyroid nodules. The vascularity 
indexes of the peripheral and central sections of the 
thyroid nodule were evaluated to differentiate benign 
and malignant lesions. This proposed approach is 
objective, highly reproducible, and has the advantage 
of eliminating the risk of intra- or inter-observer 

Figure 12. Colour Doppler 
ultrasonograms showing (a) a 
benign thyroid nodule in the 
left thyroid lobe demonstrating 
peripheral vascularity; and (b) a  
malignant nodule in the right  
thyroid lobe showing vascu-
larity in both peripheral and 
central regions of the nodule.

(a) (b)

Features suspicious of malignancy Median sensitivity (%) ± 1 standard 
deviation

Median specificity (%) ± 1 standard 
deviation

Hypoechogenicity7,12,22-30 67.4 ± 22.4 74.0 ± 19.9
Irregular margins7,12,23-28,30 55.3 ± 14.8 83.1 ± 8.4
Microcalcification7,12,20,23-30 56.0 ± 17.7 88.8 ± 9.6
Taller than wide ratio >17,12,22,23,26,29,30 56.0 ± 20.7 91.4 ± 6.1

Table 1. Diagnostic performance of various greyscale ultrasound features in differentiating benign and malignant thyroid nodules.



Ultrasound Diagnosis for Thyroid Cancer

88	 Hong Kong J Radiol. 2018;21:82-93

variation inherent with manually outlining regions of 
interest between the peripheral and central sections of 
a thyroid nodule. The authors further elaborated that 
central vascularity, when combined with suspicious 
GSU features for malignancy, enhanced the diagnostic 
accuracy of the proposed approach in identifying 
thyroid malignancy.37

Previous studies have assessed the pulsatility index 
and resistance index of thyroid nodules to differentiate 
benign and malignant nodules. However, the results of 
these studies were controversial and inconsistent.23,44,48-51 
Some studies suggested that the resistance index 
was higher in malignant nodules than that in benign 
nodules.50,52,53 However, Tamsel et al44 reported 
that resistance index was not a useful predictor of 
thyroid malignancy. Moreover, the reported cut-off 
for resistance index between benign and malignant 
nodules varied from 0.665 to 1.53.44,48-51,54 Pulsatility 
index was found to be a useful predictor for thyroid 
malignancy.48-50 However, more studies are needed to 
standardise the optimum cut-off between benign and 
malignant nodules.48-50 Although the pulsatility index 
and resistance index of thyroid nodular vascularity can 
be evaluated, their measurement using spectral Doppler 
ultrasound is time-consuming. Therefore, the roles of 
pulsatility index and resistance index in routine clinical 
practice are limited.

With the advancement of technology, ultrasound tech-
niques for the assessment of microvascularity have 
been developed, such as superb microvascular imaging 
(developed by Toshiba Medical Systems Corporation, 
Tochigi , Japan) and AngioPLUS (PLanewave 
UltraSensitive™ imaging; Supersonic Imagine, Aix-en-
Provence, France).

Superb microvascular imaging uses a unique algorithm 
and allows visualisation of smaller blood vessels 
without clutter. Conventional Doppler ultrasound uses 
a wall filter to remove clutter and motion artefacts 
at the cost of losing low-flow frames. In contrast, 
superb microvascular imaging uses an advanced 
algorithm to identify and eliminate tissue motion 
artefacts and determine blood flow with a higher 
accuracy.55 Kong et al56 evaluated 113 thyroid nodules 
and performed a comparative study between power 
Doppler ultrasonography and superb microvascular 
imaging to identify thyroid malignancy. They found 
that intranodular vascularity was 75.9% sensitive and 
91.2% specific for superb microvascular imaging, 

compared with 41.8% sensitive and 82.3% specific with 
power Doppler ultrasonography. The authors suggested 
that superb microvascular imaging for evaluating 
intranodular vascularity was useful for predicting 
thyroid cancer and that it enhanced the diagnostic 
accuracy when combined with suspicious GSU features. 
However, the absence of intranodular vascularity does 
not exclude the risk of malignancy.56

AngioPLUS is a recently launched technique for the 
detection and evaluation of small blood vessels with 
high sensitivity. AngioPLUS provides a high image 
resolution and three-dimensional wall filtering that 
allows efficient discrimination between blood vessels 
and soft tissues.57 To date, no clinical study has 
evaluated the value of AngioPLUS in the assessment 
of thyroid vasculature. AngioPLUS is commonly 
used in combination with colour or power Doppler 
ultrasonography. In our experience, AngioPLUS 
in combination with colour or power Doppler 
ultrasonography has higher sensitivity than solely colour 
or power Doppler ultrasonography in the assessment of 
thyroid vasculature (unpublished data). More studies are 
warranted to determine the clinical role of AngioPLUS 
in differentiating benign and malignant thyroid nodules.

ULTRASOUND ELASTOGRAPHY
Ultrasound elastography is a novel technique that 
quantifies the elastic properties of soft tissues. This 
technique provides information on tissue stiffness and 
evaluates the degree of distortion of soft tissue under 
stress. The basic principle of ultrasound elastography is 
that the force applied to the soft tissue is proportional 
to the tissue deformation (strain). It can be expressed 
as Young’s modulus (E), i.e. applied force/strain.36 
Because Young’s modulus is dependent on the applied 
stress, tissue strain is only comparable in elasticity 
maps with a homogeneous stress field. Ultrasound 
elastography allows tissue to undergo reversible 
deformation and provides data on the acoustic and 
mechanical properties of the area under study. Softer 
parts of a tissue are less resistant to stress compared 
with stiffer regions within the same tissue.9 There 
are two main variants of elastography techniques: 
strain elastography (SE) and shear-wave elastography 
(SWE), which provide qualitative and quantitative 
assessments of tissue stiffness, respectively. SE is also 
known as freehand quasistatic elastography or real-time 
elastography, which is an add-on module incorporated 
with standard ultrasound units. It is widely available in 
commercial units and can be used with a conventional 



FN Baig, SYW Liu, SP Yip, et al

Hong Kong J Radiol. 2018;21:82-93	 89

ultrasound transducer.58 The technology employs 
mechanical force (either an external force applied by a 
transducer, or an internal source of compression, such 
as carotid pulsation) to induce tissue strain that results 
in axial displacement. Ultrasound waves are sent before 
and after tissue displacement. A high degree of tissue 
displacement (i.e. higher strain) is associated with the 
softer regions of tissue whereas stiffer regions exhibit 
minimal or no displacement (i.e. lower or no strain). 
The time difference between regions of interest of two 
consecutive images is recorded while dedicated software 
evaluates tissue strain. This software generates a colour-
coded elastography image, i.e. an elastogram.58,59

Currently, there is no standardised method available 
for the qualitative interpretation of an elastogram.60 
However, two assessment methods are commonly used 
in clinical practice: the elastography scoring system 
and the strain ratio (SR). The elastography scoring 
system, which is based upon four to six scales, assesses 
relative tissue stiffness within the lesion. According 
to this assessment system, softer lesions are assigned 
lower elastography scores and stiffer lesions are given 
higher elastography scores. For SR measurements, 
regions of interest are selected on the target lesion and 
the adjacent reference tissue. The SR is computed as 
the ratio between the strain of the target lesion and the 
strain of the reference tissue within the same image. 
In general, an SR of >1 suggests the target lesion has 
a higher stiffness than the reference tissue. The risk of 
malignancy of a lesion can be interpreted as higher with 
increasing SR and lower with decreasing SR.

The elastography scoring system and SR are used as 
diagnostic parameters for SE. Therefore, SE is more 
subjective and yields qualitative and semi-quantitative 
information.61-63 All SE methods require a trained 
and experienced operator to perform freehand cyclic 
compression to achieve reproducible results. Freehand 
compression is difficult to standardise and may introduce 
non-uniform compression among different operators, 
creating potential intra- or inter-observer variation.64 In 
a recent study, SE was found to be useful in predicting 
thyroid malignancy. However, the authors found that 
the addition of SR to colour mapping was not as useful 
as colour mapping alone.63 In contrast, a recent meta-
analysis suggested that SR was a better predictor of 
thyroid malignancy than any other qualitative ultrasound 
feature.65 Another study found that SR was useful in 
identifying papillary thyroid cancer.66 Various studies 
have claimed that SE provides promising results in 

differentiating benign and malignant thyroid nodules.67-70 
Another study that included 102 thyroid nodules claimed 
that results recorded using carotid artery pulsation were 
more reliable than those recorded with an external source 
of compression.71 Two previous studies showed that a 
reduction of 53% and 60.8% in the rate of fine-needle 
aspiration of thyroid nodules can be achieved by using 
a standard deviation of strain within the thyroid nodule 
with systolic or diastolic stiffness index, respectively.67,72 
Despite the usefulness of an intrinsic compression 
method (i.e. carotid artery pulsation), there are some 
inherent drawbacks caused by carotid artery pulsation, 
such as non-uniform tissue deformation and SR index 
(ratio of strain distributed in two regions of interest). The 
SR between adjacent normal thyroid parenchyma and 
thyroid lesions can easily be affected by hypertension, 
carotid atherosclerosis, or arrhythmia. Medullary thyroid 
carcinoma and follicular thyroid carcinoma should not 
be evaluated by SE alone because they may appear soft 
and introduce false-negative results leading to a missed 
diagnosis.73

SWE quantifies local tissue stiffness without being 
affected by any hard regions in the vicinity of the region 
of interest.74 SWE does not require manual compression 
but uses highly focused ultrasound impulses at various 
depths of the tissue to induce tissue displacement. 
Tissue displacement of a few microns results in the 
generation of shear waves which propagate transversely 
and perpendicular to the direction of ultrasound waves. 
Shear waves travel at a much faster rate in stiffer regions 
than in softer regions. Shear-wave velocity is directly 
proportional to the square root of the Young’s modulus, 
assuming the homogeneous density of the medium 
of propagation. To measure the soft-tissue stiffness, 
the propagation speed of shear waves is tracked by an 
ultrafast sonographic tracking technique, and the tissue 
stiffness is quantified and expressed in units of m/s or 
kPa.75,76 Compared with SE, SWE is more objective, less 
operator-dependent, and highly reproducible. The tissue 
stiffness calculated by SWE is expressed as an elasticity 
index (Emaximum, Emean, Eminimum) [Figures 13 and 14].

One recent meta-analysis, which comprised of 131 
studies, including 1867 thyroid nodules from 1525 
patients, found that the pooled sensitivity and specificity 
of SWE in differentiating benign and malignant thyroid 
nodules were 84.3% and 88.4%, respectively.77 The 
authors concluded that SWE was more promising in 
differentiating benign and malignant thyroid nodules 
than any other ultrasound elastography technique.77
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Figure 14. Shear-wave elastogram 
showing a longitudinal scan of 
a malignant thyroid nodule. The 
ma l ignant nodu le has h igher 
stiffness values (mean 35.6 kPa, 
minimum 7 kPa, maximum 74.6 kPa) 
than does the benign nodule shown 
in Figure 13.

Figure 13. Shear-wave elastogram 
showing a transverse scan of a 
benign thyroid nodule. The benign 
nodule has lower stiffness values 
(mean 11.3 kPa, minimum 1.1 kPa, 
maximum 31 kPa) than does the 
malignant nodule shown in Figure 
14.
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Table 2. Diagnostic performance of GSU alone and GSU + ultrasound SWE combination in differentiating benign and malignant thyroid 
nodules.

Abbreviations: E = Young’s modulus; GSU = greyscale ultrasound; SWE = shear-wave elastography.

Few studies have evaluated the efficacy of combining 
SWE with GSU in identifying thyroid malignancy. 
The results of studies that have combined GSU with 
SWE are summarised in Table 2.12,59,60,78-80 The value of 
combining SWE with GSU in distinguishing benign and 
malignant thyroid nodules remains controversial. Some 
studies found an increase in sensitivity but a decrease 
in specificity when combining the two ultrasound 
modalities.59,78,79 In contrast, other studies have shown 
the opposite result, in which combining GSU and 
SWE demonstrated an increase in specificity but a 
decrease in sensitivity.12,60 Furthermore, another study 
has demonstrated an increase in both sensitivity and 
specificity when combining SWE with GSU.80 Further 
studies are warranted to verify the clinical significance 
of combining SWE with GSU in assessing thyroid 
malignancy.

The performance of SWE has also been evaluated in 
predicting thyroid malignancy in thyroid lesions with 
indeterminate cytology. A recent study found that 
SWE was 93.3% sensitive and 100% specific with 
an overall diagnostic accuracy of 97.8% for thyroid 
nodules with indeterminate cytology.81 Therefore, SWE 
may be useful in the diagnosis of thyroid nodules with 
indeterminate cytology.

CONCLUSIONS
Ultrasonography is a useful and reliable imaging 
method for assessing thyroid nodules and for 
distinguishing benign and malignant thyroid nodules. 
In ultrasound examination of thyroid nodules, GSU 
is the most commonly used imaging technique. Other 
techniques such as Doppler ultrasound and ultrasound 

elastography can be used as an adjunct to enhance 
diagnostic accuracy. The efficacy of new ultrasound 
techniques in thyroid nodule assessment, such as superb 
microvascular imaging, AngioPLUS and SWE, should 
be further explored and verified in large-scale studies.
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