

Supplementary material

The supplementary material was provided by the authors and some information may not have been peer reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by the Hong Kong College of Radiologists. The Hong Kong College of Radiologists disclaims all liability and responsibility arising from any reliance placed on the content.

Supplement to: Wong T, Woo SC, Fung WY, et al. Evolution in image-guided preoperative breast lesion localisation. Hong Kong J Radiol. 2025 Mar;28(1):e35-43 | Epub 12 Mar 2025. https://doi.org/10.12809/hkjr2417813.

	Equipment	Approximate cost per device per dose, HKD	Implantation duration	Strengths	Limitations
Wire ¹⁻⁶	 Delivery system: 16-to- 20–gauge needle Wire: 3-15 cm 	\$100-\$500	• Placed the same day or less commonly a day before the operation	 Well established Low cost No radioactivity No minimum spacing for multiple lesions or bracketing No depth limit for detectability The only device that can be placed under MRI guidance 	 Scheduling challenges Increased risk of syncope due to prolonged presurgical fasting External component constrains the surgical approach, impacts cosmesis Risk of wire dislodgement, transection or fracture Patient discomfort
Intraoperative ultrasound ^{2,3,6}	• Ultrasound machine with multi- frequency probe (7- 18 MHz)	N/A	N/A	 Allows continuous intraoperative margin assessment Reduces re-excision 	 Requires sonography training Limits to sonographically visible targets
ROLL ^{3,4,6-10}	• Injection of tracer via a needle	\$1,000	• Injected the same day or a day before the operation	• Allows simultaneous occult lesion localisation and sentinel lymph node mapping by single tracer injection (SNOLL)	 Radiation exposure to patients and staff Radioactivity regulations Risk of inadvertent intraductal injection

Supplementary Table. Common techniques for image-guided breast localisation in Hong Kong.

	 Gamma probe detector and console Geiger counter: detecting accidental leakage 				• Scheduling challenges as tracer decays with time
Radar reflectors ^{1-6,8-} 13	 Delivery system: 16- gauge needle; 5 cm, 7.5 cm or 10 cm Marker: 12 mm (standard) or 8 mm (mini); antennae made of nitinol alloy Surgical probe detector and console 	\$6,500	• Can be placed >30 days before operation	 Scheduling flexibility Long-term implantation No radioactivity Minimal MRI artefact Licensed to localise axillary lymph nodes 	 Adjacent dense object and halogen light may affect its detection 6-cm depth limitation for detection At least 2 cm apart for multiple reflectors Nickel allergy Micro-impulse radar signal may interfere with cardiac implants Reflector may be disabled by electrocautery Risk of antenna transection

Magnetic seeds ^{1-6,10,11}	 Delivery system: 18 gauge; 7 cm or 12 cm Device: 5 mm; made of low nickel stainless steel Surgical probe detector and console 	\$3,900	• Can be placed >30 days before operation	 Scheduling flexibility Long-term implantation No radioactivity Licensed to localise axillary lymph nodes Can use with magnetic tracer for sentinel lymph node localisation 	 Use of non-ferromagnetic surgical instruments 3 to 4 cm depth limitation for detection At least 2 cm apart for multiple seeds 4 to 6 cm MRI susceptibility artefact Contraindicated in patient with pacemakers or implanted chest wall devices Reaction to beeswax in terminal plug
RFID tags ¹⁻ 6,10,11	 Delivery system: 12- gauge needle; 5 cm, 7 cm or 10 cm Device: 11 mm; a ferrite rod wrapped in copper with a microprocessor enclosed in a 	\$4,500 (inclusive of the single-use probe)	 Can be placed >30 days before operation 	 Scheduling flexibility Long-term implantation No radioactivity Unique identification number for each tag Pencil-sized surgical probe allows smaller incisions 	 3-cm (loop detector) or 6-cm (probe detector) depth limitation for detection At least 2 cm apart for multiple tags 2-cm MRI susceptibility artefact Large size Not intended for use in patients with cardiac implants

	polypropylene capsule
•	Single-use
	probe detector,
	reusable hand-
	held loop
	detector and
	console

Abbreviations: HKD = Hong Kong dollars; MRI = magnetic resonance imaging; N/A = not applicable; RFID = radiofrequency identification; ROLL = radioguided occult lesion localisation; SNOLL = sentinel node and occult lesion localisation.

References

- 1. Cheang E, Ha R, Thornton CM, Mango VL. Innovations in image-guided preoperative breast lesion localization. Br J Radiol. 2018;91:20170740.
- 2. Norman C, Lafaurie G, Uhercik M, Kasem A, Sinha P. Novel wire-free techniques for localization of impalpable breast lesions—a review of current options. Breast J. 2021;27:141-8.
- Banys-Paluchowski M, Kühn T, Masannat Y, Rubio I, de Boniface J, Ditsch N, et al. Localization techniques for non-palpable breast lesions: current status, knowledge gaps, and rationale for the MELODY study (EUBREAST-4/iBRA-NET, NCT 05559411). Cancers (Basel). 2023;15:1173.
- 4. Kapoor MM, Patel MM, Scoggins ME. The wire and beyond: recent advances in breast imaging preoperative needle localization. Radiographics. 2019;39:1886-906.
- 5. Hayes MK. Update on preoperative breast localization. Radiol Clin North Am. 2017;55:591-603.
- 6. Fusco R, Petrillo A, Catalano O, Sansone M, Granata V, Filice S, et al. Procedures for location of non-palpable breast lesions: a systematic review for the radiologist. Breast Cancer. 2014;21:522-31.

- Au AK, Wan AY, Leung BS, Lo SS, Wong WW, Khoo JL. Efficacy of radioguided occult lesion localisation: how well are we doing? Hong Kong J Radiol. 2016;19:269-78.
- 8. Aydogan F, Ozben V, Yilmaz MH, Celik V, Uras C, Ferahman M, et al. Simultaneous excision of ipsilateral nonpalpable multiple breast lesions using radioguided occult lesion localization. Breast. 2011;20:241-5.
- 9. Chu TY, Lui CY, Hung WK, Kei SK, Choi CL, Lam HS. Localisation of occult breast lesion: a comparative analysis of hookwire and radioguided procedures. Hong Kong Med J. 2010;16:367-72.
- 10. Guirguis MS, Adrada BE, Scoggins ME, Moseley TW, Moseley TW, Le-Petross HC, et al. The challenging image-guided preoperative breast localization: a modality-based approach. AJR Am J Roentgenol. 2022;218:423-34.
- 11. Jeffries DO, Dossett LA, Jorns JM. Localization for breast surgery: the next generation. Arch Pathol Lab Med. 2017;141:1324-9.
- 12. Merit Medical. SCOUT Mini Reflector Datasheet. Available from: <u>https://www.merit.com/merit-oncology/localization/breast-soft-tissue-localization/scout-radar-localization/scout-mini-reflector/</u>. Accessed 7 Jan 2024.
- 13. Woo SC, Wong T, Chau CM, Fung WY, Chan RL, Yung AW, et al. Radar localisation of non-palpable breast lesions in a Chinese population: a pilot study. Hong Kong J Radiol. 2022;25:192-203.