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ABSTRACT
Introduction: Determining the origin of intracranial lesions can be challenging. This study aimed to assess the 
feasibility of a machine learning model in distinguishing intra-axial (IA) from extra-axial (EA) brain tumours using 
magnetic resonance imaging (MRI).
Methods: We retrospectively reviewed 92 consecutive adult patients (age >18 years) with newly diagnosed solitary 
brain lesions who underwent contrast-enhanced brain MRI at our institution from January 2017 to December 2018. 
Tumour volumes of interest (VOIs) were manually segmented on both T2-weighted (T2W) and T1-weighted (T1W) 
post-contrast images. An XGBoost machine learning algorithm was used to generate classification models based on 
textural features extracted from the segmented VOIs, with histopathology as the reference standard.
Results: Among the 92 lesions analysed, 70 were IA and 22 were EA. The area under the receiver operating 
characteristic curve for identifying IA tumours was 0.91 (95% confidence interval [95% CI] = 0.89-0.93) for the 
T1W post-contrast model, 0.81 (95% CI = 0.78-0.84) based on T2WI model, and 0.92 (95% CI = 0.90-0.94) for 
the combined model. All models demonstrated high sensitivity (>90%) for identifying intra-axial tumours, though 
specificity was lower (39%-64%). Despite this, models achieved acceptable levels of accuracy (>80%) and precision 
(>88%).
Conclusion: This preliminary study demonstrates the feasibility of a machine learning classification model for 
differentiating IA from EA tumours using MRI textual features. While sensitivity was high, specificity was limited, 
likely due to the class imbalance. Further studies with balanced datasets and external validation are warranted.
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INTRODUCTION
Intracranial tumours can pose a diagnostic challenge 
in clinical practice. Recent advancements in artificial 
intelligence in radiology may provide additional 
diagnostic information. Radiomics techniques such as 
texture analysis can reveal grey-level patterns beyond 
what is possible through expert human visual perception 
alone.1 Numerous quantitative textural features can be 
derived, including simple statistics based on grey-level 
histograms, and higher-order features based on spatial 
relationships among pixels.2 These radiomic features, 
derived from conventional magnetic resonance imaging 
(MRI) sequences, can be leveraged to train various 
machine learning (ML) models to detect and classify 
brain tumours, as well as predict prognosis and treatment 
response.3-5

Previous applications of radiomics in brain tumour 
research have aimed to improve diagnosis and 
post-treatment imaging of gliomas, including 
grading, distinguishing tumour progression from 
pseudoprogression, patient survival, and genetic 

expression.3,4 Other neuro-oncologic ML advances 
include differentiating gliomas from mimics such 
as meningiomas, pituitary tumours, and solitary 
metastases,5,6 diagnosis of paediatric tumours,7,8 and 
detecting metastases.9 Radiomic approaches can offer 
more consistent results with good external validity, 
compared to the interrater variability of human readers.6 
More recently, deep learning models trained to detect 
brain metastases have shown advantages over classical 
ML in terms of lower false-positive rates albeit with 
greater training data requirements.9

Accurately determining whether a lesion arises from 
within the brain parenchyma (intra-axial, IA) or from 
the surrounding structures (extra-axial, EA) is crucial 
for diagnosis and treatment planning. This study aimed 
to determine whether ML of MRI radiomic features can 
differentiate between IA and EA locations.

METHODS
Patient Population
This retrospective study performed at a single tertiary-
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磁力共振影像紋理特徵的機器學習能否區分腦內與腦外腫瘤？一項可行性
研究

Ohoud Alaslani, Nima Omid-Fard, Rebecca Thornhill, Nick James, Rafael Glikstein

引言：確定顱內病變的來源可具挑戰性。本研究旨在評估機器學習模型在磁力共振影像中區分腦內

與腦外腫瘤的可行性。

方法：本研究回顧分析2017年1月至2018年12月期間於本院接受增強磁力共振影像檢查的92位連續成
年患者（年齡18歲以上），這些患者均為新診斷的單發性腦病變個案。研究人員於T2加權影像及T1
加權增強影像上手動分割腫瘤感興趣體積，並從中提取紋理特徵。之後，應用XGBoost機器學習演
算法，並以組織病理學結果為參考標準，建立分類模型。

結果：92個病灶中，70個為腦內腫瘤，22個為腦外腫瘤。T1加權增強影像模型辨識腦內腫瘤的受
試者工作特徵曲線下面積為0.91（95%置信區間 = 0.89-0.93），T2加權影像模型為0.81（95%置信區 
間 = 0.78-0.84），組合模型則為0.92（95%置信區間 = 0.90-0.94）。所有模型對識別腦內腫瘤均表現
出較高敏感度（>90%），但特異性相對較低（39%-64%）。儘管如此，模型仍達到了可接受的準確
度（>80%）與精確度（>88%）。
結論：本初步研究證實，應用磁力共振影像紋理特徵建立機器學習分類模型，有助於區分腦內與腦

外腫瘤。雖然模型具備良好敏感度，但特異性較低，可能與類別不平衡有關。建議未來研究採用類

別平衡的資料集，並進行外部驗證，以提升模型效能與泛化能力。
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care academic centre. Medical record review was 
conducted per the guidelines of the Institutional Review 
Board. We identified 92 consecutive adult patients 
(age >18 years) who underwent brain MRI for a newly 
diagnosed solitary brain lesion from January 2017 to 
December 2018. Patients with multiple lesions or prior 
surgery or chemo/radiotherapy were excluded. Data on 
age, sex, and final histopathology were recorded.

Magnetic Resonance Imaging
MRI of the brain was performed using 1.5 T (25 IA and 
9 EA tumours; Siemens Magnetom Symphony, Siemens 
Medical Systems, Erlangen, Germany) or 3 T (45 IA and 
13 EA tumours; Siemens Tim Trio or GE DISCOVERY 
MR 750w, GE Medical Systems, Milwaukee [WI], US) 
systems. Using a dedicated head coil, three-dimensional 
(3D) axial stacks of T1-weighted (T1WI) post-contrast 
and T2-weighted images (T2WI) were acquired with 
the following parameters: 1.5 T: T2WI (fast spin echo 
with fat saturation): TR/TE 3510/97, echo train length 
9, flip angle 180°, section thickness 5.5 mm; T1W post-
contrast (fast spoiled gradient echo with fat saturation): 
TR/TE 6.73/2.71, flip angle 15°, section thickness 1 mm. 
3 T: T2WI (fast spin echo with fat saturation): TR/TE 
6700/97, echo train length 18, flip angle 120°, section 
thickness 3 mm; T1WI post-contrast (fast spoiled gradient 
echo): TR/TE 8.48/3.21, flip angle 12°, section thickness 
1 mm. Post-contrast T1WI images were acquired after 
hand injection of 0.1 mmol/kg of gadobutrol (Gadovist; 
Bayer Healthcare, Hong Kong, China), followed by a 
10-20 mL saline flush, using a 4–5-minute delay before 
acquisition at 3 T and a 6-to-7-minute delay at 1.5 T. 
All images were reviewed using a Picture Archiving 

Computed System (PACS; Horizon Medical Imaging, 
McKesson Corporation, San Francisco [CA], US).

Histopathology
The IA or EA designation was confirmed by final 
histopathology following biopsy, extracted from 
the electronic medical records. The specimens were 
obtained by the neurosurgeons and analysed by the 
neuropathologists at our centre.

Image Analysis and Tumour Segmentation
Tumour volumes of interest (VOI) were manually 
segmented on both T2WI and post-contrast T1WI using 
ImageJ version 1.52r (National Institutes of Health, US, 
https://imagej.net/) by a neuroradiology fellow, under 
supervision of a staff neuroradiologist with over 30 years 
of experience. VOI contours were subsequently submitted 
to a blinded medical imaging scientist (redacted/blinded 
for review) for texture analysis. Examples are shown in 
Figure 1.

First- and second-order statistical textural features 
were computed for each VOI and MRI sequence using 
MaZda software (version 4.6.0; Institute of Electronics, 
Technical University of Lodz, Lodz, Poland).10 First-
order features included grey-level histogram mean, 
variance, skewness, kurtosis, and percentile values (1st 
to 99th). Second-order features included grey-level 
co-occurrence matrix (GLCM11) and run-length matrix 
(RLM12) features (11 GLCM and 5 RLM features per 
sequence) Before computing GLCM and RLM features, 
signal intensities were normalised between μ ± 3σ  
(where μ was the mean value of grey levels inside the 

Figure 1. Manual segmentation in two sample patients. (a) T1-weighted post-contrast and (b) T2-weighted magnetic resonance imaging 
(MRI) sequences showing an extra-axial mass arising from the left frontal falx. (c) T1-weighted post-contrast and (d) T2-weighted MRI 
sequences from a different patient with a right anterior temporal mass.

(a) (b) (c) (d)

https://imagej.net/
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VOI [or VOI subzone] and σ was the standard deviation) 
and decimated to 32 grey levels  to minimise inter-
scanner variability.13,14

Machine Learning and Classification
We used XGBoost,15 an open-source ML algorithm, 
to train models on the textural features extracted from 
T2WI, T1WI post-contrast, and their combination. 
Hyperparameters were tuned using an 100-trial Bayesian 
optimisation experiment via GPyOpt16 (http://github.
com/SheffieldML/GPyOpt), guided by Gaussian process 
modelling and an exploration-exploitation heuristic. 
Each model was evaluated using stratified ten-fold  
cross-validation, repeated 10 times.17 The SHAP 
(Shapley Additive exPlanations) framework18 was 
used to estimate each feature’s relative importance, 
normalised to sum to 1.0.

Statistical Analysis
Statistical analysis was performed using RStudio, an 
open-source software (version 1.3.1093; PBC, Boston 
[MA], US). Mann-Whitney U tests were used to 
compare IA and EA groups for each feature. Stepwise 
Holm-Bonferroni correction was applied for multiple 
comparisons.19 Model performance was assessed 
using accuracy, the area under the receiver operating 
characteristic curve (AUC), sensitivity, specificity, 
precision, and F1 score. ROC confidence intervals (95% 
CI) were calculated using 5000 bootstrap iterations, 
and AUC differences were assessed using DeLong’s 
method.20

RESULTS
A total of 92 lesions were analysed (70 IA and 22 EA). 
Table 1 summarises demographics and histopathological 
data. Glioblastomas (44%) and metastases (27%) were 
the most common diagnoses in the IA group, while 
meningiomas (68%) were the most common in the EA 
group. The patients aged from 23 to 84 years, with a 
mean age of 58.8 years. No significant difference was 
noted between groups (IA median, 62 years [interquartile 
range, 18] vs. EA median, 55 years [interquartile range, 
10]; p = 0.09). Males were more common in the IA group 
(66% vs. 23%; p < 0.01).

Radiomic Features
Table 2 provides median and interquartile range values 
for individual 3D textural features. EA tumours showed 
higher histogram mean, kurtosis, and 10th and 50th 
percentiles on T1WI post-contrast, and lower skewness 
(p < 0.001 for all). On T2WI, only kurtosis was 
significantly higher in the EA group (p < 0.001), while 
the 90th and 99th percentiles were significantly lower  
(p = 0.002 and 0.001, respectively).

Among the second-order features computed from T1W 
post-contrast images, GLCM correlation, sum of squares, 
sum variance, and sum entropy associated with EA 
tumours were significantly lower than those computed 
for the IA group (p = 0.002 for correlation and p < 0.001 
for the rest; Table 2). The T1 GLCM sum average and 
difference variance were both significantly greater in 
EA tumours compared to the IA group (p = 0.001 and 
p < 0.001, respectively). Similar to T1 post-contrast, the 
GLCM correlation, sum of squares, and sum variance 
features evaluated from T2 images were significantly 
lower than those in the IA group (p < 0.001 for each). 
The T2 GLCM difference variance was significantly 
greater in EA tumours compared to the IA group  
(p < 0.001). Among the group differences assessed for 
RLM features, none was found to be significant after 
Holm–Bonferroni correction for multiple comparisons 
(Table 2).

The classification performance metrics for each of the 
three ML models are summarised in Table 3. Receiver 
operating characteristic curves and feature attribution 
scores are depicted in Figures 2 to 4. The AUC for the 
identification of IA tumours was 0.91 (95% CI = 0.89-
0.93; Figure 2a) for the model based on T1-weighted 
post-contrast MRI features, 0.81 (95% CI = 0.78-0.84; 
Figure 3a) based on T2-weighted MRI features, and 0.92 
(95% CI = 0.90-0.94; Figure 4a) based on all features.

Entire 
group

Intra-axial Extra-
axial

Overall 92 (100%) 70 (76%) 22 (24%)
Male sex 51 (55%) 46 (90%) 5 (10%)
Mean age, y 58.8 60.0 55.0
Histopathologies

Glioblastoma 31 (44%) 0
Non-glioblastoma 
astrocytoma

10 (14%) 0

Oligodendroglioma 3 (4%) 0
Metastases 19 (27%) 2 (9%)
Neurenteric cyst 0 2 (9%)
Abscess 1 (1%) 0
Meningioma 0 15 (68%)
Schwannoma 0 3 (14%)
Other rare tumours† 6 (9%) 0

Table 1. Demographics and histopathologies (n = 92).*

*	Data are shown as No. (%), unless otherwise specified.
†	Single occurrence each of astroblastoma, central neurocytoma, 

intra-axial chondrosarcoma, diffuse large B cell lymphoma, 
extramedullary plasmacytoma, and gliosarcoma.

http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
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Table 3 shows that the three models (T1WI, T2WI, and 
combined) yielded AUCs that were significantly greater 
than 0.5 (p < 0.0001 for each comparison). The model 
produced by the T2WI features alone resulted in an AUC 

that was significantly lower than the model produced by 
either the T1W post-contrast or combined sequences  
(p < 0.0001 for each comparison). The combined model 
AUC was not significantly greater than the T1 model 

Table 2. Median values of 25 individual textural features used in machine learning classification.

Abbreviation: IQR = interquartile range.
*	The Holm-Bonferroni corrected significance threshold was p = 0.002 (0.05/25). p Values below this threshold are shown in bold.

Figure 2. (a) Receiver operating characteristic curve showing the area under the curve (AUC) for the XGBoost model, and (b) SHAP (Shapley 
Additive exPlanations) feature importance plot for the same model trained on T1-weighted post-contrast magnetic resonance imaging 
textural features to identify intra-axial tumours. SHAP values are aggregated across samples and normalised to sum to 1.0.
Abbreviation: 95% CI = 95% confidence interval.
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Kurtosis

Skewness
Sum entropy

10th percentile
Sum variance

Angular second moment
Difference variance

50th percentile
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Sum of squares

Sum average
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Run length non-uniformity
Entropy
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(a) (b)

Random
AUC = 0.908 (95% CI = 0.888-0.927)

T1-weighted post-contrast features T2-weighted features

Extra-axial Intra-axial p Value* Extra-axial Intra-axial p Value*

Median IQR Median IQR Median IQR Median IQR

Mean 2071 972 1452 556 <0.001 1559 954 2030 667 0.029
Variance 179305 160284 235027 239302 0.501 130296 204391 302109 404343 0.003
Skewness -0.81 0.95 0.37 0.84 <0.001 -0.03 1.21 0.35 0.72 0.163
Kurtosis 1.56 2.53 -0.09 2.38 <0.001 1.15 1.85 -0.07 1.94 <0.001
1st percentile 739 394 651 286 0.006 651 558 924 526 0.017
10th percentile 1486 720 892 317 <0.001 1222 759 1326 538 0.238
50th percentile 2121 1045 1374 586 <0.001 1567 1076 1952 671 0.050
90th percentile 2531 1116 2137 939 0.011 2153 1322 2860 1117 0.002
99th percentile 3020 1177 2755 1004 0.047 2804 1209 3317 1084 0.001
Angular second moment 0.01 0.01 0.01 0.00 0.014 0.01 0.01 0.01 0.01 0.428
Contrast 14.98 4.72 12.49 7.21 0.045 9.40 6.00 7.76 5.65 0.014
Correlation 0.64 0.14 0.75 0.13 0.002 0.75 0.09 0.85 0.10 <0.001
Sum of squares 22.18 4.35 26.39 3.44 <0.001 24.48 2.81 25.87 1.60 <0.001
Inverse difference moment 0.36 0.12 0.36 0.13 0.844 0.45 0.13 0.52 0.16 0.050
Sum average 33.62 0.68 33.14 0.57 0.001 33.17 0.86 33.30 0.37 0.472
Sum variance 71.6 15.6 90.6 15.4 <0.001 85.4 12.5 95.2 7.9 <0.001
Sum entropy 1.49 0.04 1.55 0.05 <0.001 1.54 0.11 1.55 0.07 0.086
Entropy 2.30 0.18 2.32 0.20 0.186 2.14 0.27 2.08 0.24 0.312
Difference variance 7.94 2.64 5.95 2.73 <0.001 4.74 1.81 3.61 1.74 <0.001
Difference entropy 0.90 0.13 0.88 0.12 0.278 0.75 0.15 0.68 0.17 0.013
Run length non-uniformity 6962 14579 12927 18972 0.236 4938 8437 6768 18704 0.183
Grey-level non-uniformity 610 1535 1065 1576 0.495 429 902 749 2212 0.307
Long runs emphasis 1.64 0.55 1.66 0.61 0.887 2.05 1.32 2.96 2.99 0.038
Short runs emphasis 0.89 0.06 0.89 0.05 0.752 0.84 0.08 0.80 0.12 0.046
Fraction 0.85 0.09 0.85 0.09 0.974 0.79 0.11 0.72 0.18 0.045
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alone (p = 0.135). All models had high sensitivity in 
identifying intra-axial tumours (>90% for each), but none 
achieved high specificity (39%-64%). Nevertheless, the 
models attained acceptable levels of accuracy (>80%) 
and precision (>88%).

The feature importance attribution profile associated 
with the model trained using T1W post-contrast MRI 
features reveals that grey-level kurtosis, skewness, 
sum entropy, 10th (histogram) percentile, and sum 
variance contributed two thirds of the total proportional 
importance score (0.67/1.00) for this model (Figure 2b). 
Sum variance and kurtosis also contributed strongly 

Figure 3. (a) Receiver operating characteristic curve showing the area under the curve (AUC) for the XGBoost model, and (b) SHAP (Shapley 
Additive exPlanations) feature importance plot for the same model trained on T2-weighted magnetic resonance imaging textural features to 
identify intra-axial tumours. SHAP values are aggregated across samples and normalised to sum to 1.0.
Abbreviation: 95% CI = 95% confidence interval.
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Figure 4. (a) Receiver operating characteristic curve showing the area under the curve (AUC) for the XGBoost model, and (b) SHAP (Shapley 
Additive exPlanations) feature importance plot for the same model trained on combined T1-weighted post-contrast and T2-weighted 
magnetic resonance imaging textural features to identify intra-axial tumours. SHAP values are aggregated across samples and normalised 
to sum to 1.0.
Abbreviation: 95% CI = 95% confidence interval.

Metric T1-weighted 
post-contrast

T2-weighted Combined

AUC 0.91 (0.89-0.93) 0.81 (0.78-0.84) 0.92 (0.90-0.94)
Accuracy 0.87 (0.85-0.89) 0.80 (0.77-0.83) 0.88 (0.85-0.90)
Sensitivity 0.95 (0.94-0.97) 0.93 (0.91-0.95) 0.95 (0.93-0.97)
Specificity 0.61 (0.55-0.68) 0.39 (0.33-0.45) 0.64 (0.57-0.70)
Precision 0.89 (0.86-0.91) 0.83 (0.80-0.85) 0.89 (0.87-0.92)
F1 score 0.92 (0.90-0.93) 0.88 (0.86-0.89) 0.92 (0.91-0.94)

Table 3. Classification performance metrics for each magnetic 
resonance imaging textural feature of the machine learning 
model.*

Abbreviation: AUC = area under the receiver operating characteristic 
curve.
*	Data are shown as scores (95% confidence intervals). 95% 

confidence intervals were estimated using bootstrap resampling 
procedures with 5000 iterations.
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towards the total proportional importance of the T2-
based model (0.40/1.00), with sum of squares, difference 
variance, and 1st percentile contributing an additional 
0.36/1.00 towards the total proportional importance for 
the T2-based model (Figure 3b). In the combined model, 
the T1WI skewness, kurtosis, sum entropy, and 10th 
percentile were found to represent four of the five ‘most 
important’ features, contributing 0.50/1.00 of the total 
proportional importance (Figure 4b).

DISCUSSION
Classically described features of EA lesions include 
broad-based dural attachment, adjacent bony changes, 
formation of a cerebrospinal fluid cleft, deviation of pial 
vessels, and buckling of the grey-white junction.21 The 
most common primary EA lesions include meningiomas, 
schwannomas, pituitary adenomas, and Rathke’s 
cleft cysts, all of which have characteristic locations 
and signal properties that can aid the radiologist’s 
diagnosis.21 For example, pituitary adenomas always 
arise in the sella or suprasellar location and may be 
completely T1 hypointense, or may also contain areas 
of cystic change and haemorrhage, and demonstrate 
delayed enhancement. Conversely, primary IA lesions 
are dominated by gliomas and lymphoma, with gliomas 
showing an infiltrative T2/fluid attenuated inversion 
recovery hyperintense pattern of spread along white 
matter tracts, and lymphoma characterised by greater 
diffusion restriction of its solid component.

Nevertheless, lesions can be challenging to localise 
visually, especially if large and associated with mass 
effect or oedema. These cases may require advanced 
imaging such as MRI perfusion and spectroscopy. In 
certain morphologically complex cases, the tumour 
origin may not be known until after biopsy. Utilising all 
available data, including quantitative radiomic features, 
could potentially improve treatment planning and avoid 
unnecessary procedures. Another practical benefit of 
radiomic models, should they achieve parity with human 
readers, would be the ability to reduce the number of 
imaging sequences required (e.g., axial T2WI and post-
contrast T1WI, as used in our study).

We analysed 3D radiomic features of brain tumours 
using a ML framework (XGBoost), which determined 
IA versus EA location with high accuracy and AUC. 
The textural features used in the present study have 
been well described.2 The T1W post-contrast model 
achieved a classification performance comparable to 
the combined T2WI and T1WI post-contrast model, 

and both performed significantly better than the model 
trained on T2WI-based features alone.

Various studies have utilised ML for similar tasks with 
excellent results. In a meta-analysis of 29 ML studies in 
neuro-oncology focused on patient outcomes, tumour 
characterisation, and gene expression, Sarkiss and 
Germano4 reported a pooled sensitivity ranging from 
78% to 98%, specificity from 76% to 95%, and greater 
accuracy compared to conventional imaging analysis 
in predicting clinical outcomes such as survival, high- 
versus low-grade tumours, and future progression. Tetik 
et al5 developed an automated deep learning model to 
distinguish among gliomas, meningiomas, and pituitary 
tumours, achieving over 88% on all performance 
metrics including sensitivity, specificity, and Matthews 
correlation coefficient. A direct comparison of two 
human readers, a traditional ML model and a deep ML 
in differentiating glioblastoma from solitary metastases 
yielded similar performance, with AUCs of 0.77 and 0.90 
in human readers and 0.89 and 0.96 for the traditional 
and deep ML models, respectively.6 This study also 
highlighted the potential for robust generalisability 
with validation performed at a different institution, and 
greater inter-rater agreement between the ML models 
than the two human readers (albeit with differing levels 
of experience).6

Limitations
Our study has several limitations. While all three 
models demonstrated high sensitivity for identifying IA 
tumours (>90% for each), none achieved high specificity 
(T1: 61%, T2: 39%, and combined: 64%). This is 
most likely due to the case imbalance between the IA  
(n = 70) and EA (n = 22) groups, which can artificially 
raise the sensitivity and accuracy for predicting IA 
tumours. The imbalance reflects the incidence of these 
tumours21 and the nature of consecutive data acquisition. 
Second, the small sample size clearly limits the 
generalisability of our models. The current study was 
designed to assess whether MRI textural features contain 
sufficient predictive information for our XGBoost 
models to generate effective classifiers. Accordingly, the 
use of an established ten-fold cross validation method17 
was appropriate for estimating the generalisation errors 
of the models trained on T1WI post-contrast, T2WI, 
and combined MRI features. This preliminary stage 
is distinct from the development and validation of a 
single model intended for clinical deployment, which 
would require a much larger dataset and evaluation on 
external or ‘out-of-distribution’ data.22 With improved 
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optimisation, increased sample size and external 
validation, specificity could be enhanced and such a 
model could theoretically augment or complement the 
radiologist’s assessment in ambivalent cases. Finally, it 
should be noted that our dataset may be skewed towards 
aggressive or large lesions requiring resection, as we 
used a pathological reference standard. As a result, the 
extracted features could be skewed towards tumours 
that required resection, rather than asymptomatic lesions 
such as non-aggressive meningiomas.

CONCLUSION
A location-based ML classification model for 
differentiating IA from EA tumours is feasible based on 
this preliminary study, demonstrating good sensitivity. 
However, specificity was low to moderate, likely due 
to the imbalanced dataset. Further study with a more 
balanced cohort and external validation is required to 
optimise performance.
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