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ABStRACt
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and one of the leading 
causes of cancer-related deaths. Early diagnosis of HCC is crucial to achieve good outcome. Advances in 
imaging technology enable detection of early disease, accurate tumour staging, treatment planning, and post-
treatment monitoring, as well as an update of management guidelines. This review focuses on the development 
of gadoxetic acid–enhanced magnetic resonance imaging and contrast-enhanced ultrasonography in the 
diagnosis of HCC. 
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中文摘要

釓塞酸增強磁共振成像和超聲造影的肝癌診斷

曹子文

肝細胞癌是肝臟中最常見的原發性惡性腫瘤，是癌症相關死亡的主要原因之一。及時診斷肝細胞癌

是達至良好治療結果的關鍵。成像技術的進展有利於早期疾病檢測、準確腫瘤分期、治療計劃和治

療後的監測，以及對治療指引的更新。本文重點回顧釓塞酸增強磁共振成像和超聲造影在診斷肝癌

的進展。

iNtRODUCtiON
Hepatocellular carcinoma (HCC) is the sixth most 
common cancer, accounting for >90% of all primary 
liver cancers.1 Early diagnosis of HCC enables 
effective treatment and reasonable 5-year survival 
of 50% to 70%.2 Risk factors for HCC include 

chronic viral hepatitis infection, alcoholic and non-
alcoholic fatty liver disease, and other types of chronic 
inflammatory liver diseases that lead to cirrhosis.3,4 
The risks of developing chronic hepatitis B and 
hepatitis C infections are 2.5% and 2% to 8% per year, 
respectively.5,6 Before 2000, the diagnosis of HCC was 
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made primarily by histopathological analysis. Advances 
in imaging and the risk of percutaneous biopsy (such 
as tumour seeding and bleeding) have resulted in an 
increased use of non-invasive methods. In 2001, the 
European Association for the Study of the Liver and 
the European Organisation for Research and Treatment 
of Cancer accepted non-invasive criteria based on a 
combination of imaging and laboratory findings for the 
diagnosis of HCC.7 HCC is the only malignancy for 
which a radiological diagnosis is acceptable without 
histological confirmation.8

Gadoxetic acid–enhanced magnetic resonance imaging 
(Gd-EOB-MRI) and contrast-enhanced ultrasonography 
(CEUS) have gained popularity as the investigative 
tool of choice for HCC. Gadoxetic acid is a hepatocyte-
specific contrast agent, commonly used in the detection 
and characterisation of hepatic lesions, particularly in 
patients at risk of developing HCC. Its sensitivity is 
superior to other modalities such as contrast-enhanced 
(CE) computed tomography (CT) and magnetic 
resonance imaging (MRI) with extracellular agents 
(ECA).9-12 

For ultrasonography, second-generation contrast agents 
such as SonoVue (Bracco, Milan, Italy) and Sonazoid 
(GE Healthcare, Oslo, Norway) are most commonly 
used. They offer better diagnostic capability (than 
conventional grey-scale ultrasonography), safety profile 
(than iodinated or gadolinium chelate agents), and 
applicability in HCC management.13

GADOXEtiC ACiD–ENHANCED 
MAGNEtiC RESONANCE iMAGiNG

Gadoxetic acid possesses dual properties by providing 
information on both the vascular phase (during dynamic 
contrast enhancement) and hepatobiliary phase (HBP).14 
It has a higher affinity for protein binding and therefore 
an increased signal intensity during enhancement. While 
normal liver parenchyma progressively enhances due 
to the hepatocyte uptake of gadoxetic acid, most HCCs 
appear hypointense on the HBP. This leads to a greater 
lesion-to-liver contrast ratio and thus greater sensitivity 
in detecting small HCCs and greater specificity in 
differentiation from other focal liver lesions, and 
provides additional information on the multistep 
hepatocarcinogenesis process.15 Early detection and 
treatment of HCCs can improve patient outcome.16,17 
Gd-EOB-MRI has also replaced fine-needle biopsy in 
the diagnosis of atypical lesions.18

Mechanism and technique
Gadoxetic acid is an ionic contrast medium with a 
linear molecular structure. Its enhancement effect is 
mediated by gadoxetate, an ionic complex formed by 
gadolinium and the ethoxybenzyl diethylenetriamine 
pentaacetic acid ligand (EOB-DTPA), which has a 
lipophilic property. Thus, gadoxetic acid possesses dual 
properties of extracellular and hepatobiliary proponents. 
After intravenous injection, Gd-EOB-DTPA distributes 
within the vessels and in the interstitial spaces during 
the dynamic enhancement phases (arterial phase, 
portovenous phase [PVP], and transition phase). After 
the PVP, progressive uptake of the contrast by normal 
hepatocytes peaks at approximately 20 to 40 minutes 
after injection. The contrast is eliminated by the renal 
and hepatobiliary tracts in similar amounts (50% 
each).19-21 Biliary excretion typically commences after 
10 minutes of injection in healthy individuals. The 
uptake by hepatocytes occurs through transport proteins 
in the sinusoidal membrane (organic anion-transporting 
polypeptide [OATP] 8, 1B1, and B3), and biliary 
excretion occurs through proteins in the canalicular 
membrane (MRP2) later. Gd-EOB-DTPA acts similarly 
to extracellular gadolinium chelates during the early 
dynamic enhancement phases, but it provides additional 
information during the HBP, during which normal 
hepatocytes concentrate the contrast medium while 
HCCs do not, resulting in a greater lesion-to-liver 
contrast ratio.22

Gd-EOB-DTPA has a high protein-binding capability 
and increases the T1 relaxivity. This produces superior 
enhancement and enables a reduction of dose as 
compared with other extracellular gadolinium-based 
contrast media.19,20,22

The recommended imaging protocols include non–
contrast-enhanced sequences, T1-weighted in-phase 
and opposed-phase sequences, fast T2-weighted fat-
saturated sequences, diffusion-weighted imaging (DWI), 
and pre-contrast T1-weighted fat-saturated sequences. 
These are followed by intravenous bolus injection of 
Gd-EOB-DTPA in a dose of 0.1 ml/kg (0.025 mmol/kg)  
at a rate of 1 ml/s, followed by saline solution flush 
(20 ml) at the same infusion rate. This corresponds to 
one-half of the dose of ECA usually used in abdominal 
studies. After injection, a T1-weighted fat-saturated 
gradient-echo sequence is obtained in the arterial phase 
(after 15-20 seconds), PVP (after 50-60 seconds), 
transition phase (after 120 seconds), and HBP (after 
20 minutes). The total scan time may be reduced by 
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performing the T2-weighted sequence and the diffusion 
sequence between the transition phase and HBP.20,23,24

Gd-EOB-DTPA is well tolerated and is eliminated 
through the renal and hepatobiliary tracts. In patients 
with terminal renal dysfunction, it can be eliminated 
by dialysis. Nonetheless, there is still a possibility of 
nephrogenic systemic fibrosis despite the low exposure 
to gadolinium. Careful evaluation of risks and benefits 
is needed in patients with severe renal impairment. The 
compound does not cross the intact blood-brain barrier 
and diffuses through the placental barrier only in a 
small concentration. Data about exposure to Gd-EOB-
DTPA during pregnancy are not available. No effect 
to the infant during breastfeeding is expected. Dose 
adjustment is not required in elderly patients or patients 
with hepatic or renal dysfunction. An increased bilirubin 
level is associated with a reduction in the enhancement 
effect in the liver during the HBP.21

Nonetheless, Gd-EOB-DTPA may be associated 
with hypersensitivity reactions or other idiosyncratic 
reactions characterised by cardiovascular, respiratory, 
or cutaneous manifestations, or shock. Its reported side- 
effects are similar to those of non-specific gadolinium 
chelates, including nausea (1%), headache (0.9%), 
lumbar pain (0.5%), vertigo (0.4%), vasodilation (0.6%), 
dysgeusia, and pain at the injection site.19,25

Detection of Small Hepatocellular Carcinoma
Imaging diagnosis of small HCC (≤2 cm) is a challenge,26 
as typical features of arterial hyperenhancement and 
washout are uncommon and overlap with other benign 
or premalignant lesions.27 Small HCC may be sub-
classified as early and progressed HCC.28 Histologically, 
early HCC is difficult to distinguish from high-grade 
dysplastic nodules. The presence of stromal invasion 
is the key to diagnosis. Early HCC consists of well-
differentiated tumour cells that grow by replacement and 
thus has a vaguely nodular appearance with an indistinct 
margin. Progressed HCC consists of moderately 
differentiated tumour cells with an expansile growth 
pattern and thus has a discrete nodular appearance with 
a tumour capsule.29

In a meta-analysis of patients with chronic liver 
disease, the per-lesion sensitivity was significantly 
lower in subcentimetre HCC than larger HCC on CT 
(31% vs. 82%) and MRI (48% vs. 88%). Gd-EOB-
MRI has a higher sensitivity than CECT in detecting 
HCC because of a higher lesion-to-liver contrast ratio 

(Figure 1). Gd-EOB-MRI can detect additional HCCs in 
patients initially diagnosed as having a single lesion on 
dynamic CT.30 Accurate detection can reduce the risk 
of recurrence and improve overall survival. Gd-EOB-
MRI is superior to CT or ECA-MRI in detecting small 
HCCs.30 A combination of Gd-EOB-MRI and DWI has 
even higher sensitivity in detecting small HCCs than 
either method alone.31,32

Hepatocellular Carcinoma Versus Dysplastic 
Nodule
In cirrhotic livers, atypical enhancement patterns 
in small HCCs are not uncommon. It is difficult to 
differentiate early HCC from a non-malignant or pre-
malignant dysplastic nodule owing to overlapping 
pathological and radiological features.33 The HBP of 
Gd-EOB-MRI can be used to distinguish between 
the two (Figure 2). As OATP expression decreases 
during hepatocarcinogenesis, HCC is hypointense to 
background liver parenchyma on the HBP.34,35 Signal 
intensities on DWI and HBP are useful to differentiate 
between HCC and dysplastic nodule, and between high-
grade and low-grade dysplastic nodules.36 HCC and a 
lesser proportion of high-grade dysplastic nodules are 
hyperintense on DWI, whereas low-grade dysplastic 
nodules are not.36

Hyperintensity on the HBP is suggestive of benign 
hepatocellular lesions such as focal nodular hyperplasia. 
Most HCCs are hypointense on HBP, though 5% to 
20% of HCCs are iso- to hyper-intense on HBP due 
to genetic mutations, which cause a paradoxical over-
expression of OATP, most commonly in moderately 
d i f ferent ia ted HCC. 37,38 Common fea tures of 
hyperintense HCC on HBP include focal geographic 
defects of contrast uptake (indicating intratumoural 
necrosis or heterogeneous histological differentiation) 
and a hypointense rim (indicating a peritumoural 
capsule).39

Hepatocellular Carcinoma Versus Vascular 
Pseudolesion
Vascular pseudolesions are non-tumourous perfusion 
alterations (such as arterioportal shunts) and can 
mimic small HCC. As cirrhosis progresses, sinusoidal 
capillarisation and obliteration of hepatic venules lead 
to arterioportal shunting.40 These shunts usually appear 
as subcapsular wedge-shaped transient parenchymal 
enhancement on the arterial phase. In cirrhotic livers, 
the shunts typically have a centrally located, round 
or oval appearance due to architectural distortion of 
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Figure 2. Gadoxetic acid–enhanced magnetic resonance imaging 
of the liver showing a dysplastic nodule (arrows) with mild T1-
hyperintensity in the (a) in-phase, signal loss in the (b) opposed 
phase, hypoenhancement in the (c) late arterial, (d) portovenous, 
and (e) transitional phases, and isointensity in the (f) hepatobiliary 
phase.

(a) (d)(b) (c)

(e) (f)

Figure 1. Gadoxetic acid–enhanced magnetic resonance imaging of the liver showing a 9-mm hepatocellular carcinoma in segment IVb 
(arrows), with very subtle hyperenhancement in the (a) early arterial phase, capsule enhancement and washout in the (b) portovenous 
phase, distinct hypoenhancement in both the (c) transitional and (d) hepatobiliary phases. Contrast-enhanced computed tomography 
showing near isoenhancement of the lesion in the (e) arterial, (f) portovenous, and (g) delayed phases.

(a)

(e) (f) (g)

(b) (c) (d)
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the background parenchyma.41 On Gd-EOB-MRI, 
vascular pseudolesion is typically isointense on the 
HBP due to intact hepatocyte function, whereas 
most small hypervascularised HCCs are hypointense 
on HBP (Figure 3). Nonetheless, >10% of vascular 
pseudolesions are relatively hypointense on HBP, it is 
suggested that low lesion-to-liver signal intensity ratio 
on the HBP and hyperintensity on DWI are more likely 
to indicate HCC than vascular pseudolesion.42

Hepatocellular Carcinoma Versus Non-
hepatocellular tumours
Patients with chronic hepatitis and cirrhosis are at 
risk of developing intrahepatic cholangiocarcinoma 
(ICC), which is the second commonest primary hepatic 
malignancy after HCC. Differentiating ICC from HCC 
is crucial as their management and prognoses are 
different.43,44 On CECT or ECA-MRI, ICC typically 
shows peripheral or weak enhancement on the arterial 

phase and centripetal or persistent enhancement on the 
PVP and delayed phases.45,46 Nonetheless, small ICCs in 
patients with cirrhosis display arterial enhancement and /  
or venous washout more frequently than those in the 
normal liver.47,48 On Gd-EOB-MRI, both ICC and HCC 
are hypointense on HBP due to the lack of functioning 
hepatocytes.49 On Gd-EOB-MRI, features suggestive of 
ICC include the absence of fat or capsule appearance, 
central hypointensity on T2-weighted images, lesser 
degree of arterial enhancement, and target appearance 
on DWI and HBP images (Figure 4).50-52

Imaging features of metastases vary according to 
the primary histology. Hepatic metastases from 
adenocarcinoma (such as colorectal cancer) are usually 
hypovascular and have arterial rim-like enhancement, 
whereas metastases from neuroendocrine tumour, 
renal cell carcinoma, melanoma, and breast cancer 
are hypervascular and have arterial enhancement 

Figure 3. Gadoxetic acid–enhanced magnetic resonance imaging of the liver showing a vascular pseudolesion (arrows) with vague 
hyperenhancement in the (a) arterial phase and subsequent isoenhancement in the (b) portovenous, (c) transitional, and (d) hepatobiliary 
phases.

(a) (b) (c) (d)

Figure 4. Gadoxetic acid–enhanced magnetic resonance imaging of the liver showing an intrahepatic cholangiocarcinoma (arrows), with 
subtle peripheral enhancement and arterioportal shunting with large perfusion alteration in the left lobe in the (a) arterial phase, centripetal 
enhancement in the (b) portovenous and (c) delayed phases, and a target appearance with hypointense rim in the (d) hepatobiliary phase.

(a) (b) (c) (d)
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with delayed washout, like HCC. Regardless of the 
primary histology, metastases are commonly identified 
as hypointense lesions on HBP images, owing to the 
lack of functioning hepatocytes within the tumour.53 
Thus, Gd-EOB-MRI may not be superior to CECT 
or ECA-MRI in differentiating metastasis from HCC. 
Nonetheless, metastasis is more likely in the presence of 
multiple focal lesions in a non-cirrhotic liver, especially 
in patients with known malignancy.54

Haemangioma is the most common benign hepatic 
pathology. On CECT and ECA-MRI, a typical 
haemangioma shows early peripheral nodular 
enhancement with subsequent centripetal and prolonged 
enhancement. On Gd-EOB-MRI, haemangioma is 
typically hypointense on HBP because of the absence 
of hepatocytes,55 and of low signal intensity on the 
transition phase as the parenchymal enhancement 
gradually increases after the PVP, which is known 
as pseudowashout (Figure 5). According to the Liver 
Imaging-Reporting and Data System (LI-RADS) 
guidelines, washout should be determined in the PVP 
only and not in the transition phase.11 Haemangiomas 
are typically moderately to markedly hyperintense on 
T2-weighted images and hyperintense on DWI with 
high apparent diffusion coefficient.56,57

Hepatic angiomyolipoma is a rare benign mesenchymal 
tumour and comprises variable proportions of thick-
walled vessels, smooth muscle cells, and adipose 
tissue. It has diverse imaging features and mimics HCC 
to show arterial enhancement, intralesional fat, and 
washout.58,59 In addition, lipid-poor angiomyolipoma 
has no detectable fat component on imaging or 

chemical shift imaging.58,60 On Gd-EOB-MRI, both 
entities show similar dynamic enhancement patterns, 
but angiomyolipoma tends to be more homogeneously 
hypointense and of lower signal intensity in HBP, as it 
does not contain hepatocytes, whereas HCC contains 
hepatocytes with various degrees of malignant change.61

Gd-EOB-MRi Versus Other Modalities
Gd-EOB-MRI provides higher per-lesion accuracy for 
HCC diagnosis than CECT, CT hepatic arteriography, 
CT arterioportography, and ECA-MRI.62-64 It provides 
maximum lesion conspicuity for HCC,35,65,66 and 
characterises atypical HCCs.35,67-69 It adds value in 
HCC diagnosis when combined with other imaging 
modalities.35,68,70-74 Gd-EOB-MRI is more cost-effective 
than ECA-MRI or CECT; its direct costs are lower and 
can generate more quality-adjusted life years.75 

Gd-EOB-MRi as a Biomarker
HCC that is hyperintense on HBP has a higher grade 
of tumour differentiation and vice versa.76-80 HCC with 
iso- / hyper-enhancement on HBP has a lower risk for 
vascular invasion and recurrence,81-83 and lower levels of 
expression of poor-prognostic immunohistochemical /  
progenitor cell markers including alpha-fetoprotein, 
protein induced by vitamin K absence or antagonist II, 
epithelial cell adhesion molecule, cytokeratin 10, and 
glypican-3.18,82,84 Signal intensity, morphology, and 
signal heterogeneity in HBP are poor prognosticators.85,86

For hypovascular nodules on dynamic imaging, 
hypointensity on HBP indicates high-risk lesions that 
later transform into overt hypervascular HCC.87-92 The 
presence of hypovascular HBP hypointense nodules 

Figure 5. Gadoxetic acid–enhanced magnetic resonance imaging of the liver showing a hepatic haemangioma at segment VIII (arrows), 
with peripheral nodular hyperenhancement in the (a) arterial phase, contrast fill-in in the (b) portovenous phase, hypoenhancement or 
pseudowashout in the (c) transitional phase, and hypointensity in the (d) hepatobiliary phase.

(a) (b) (c) (d)
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predicts multi-centric recurrence after resection.93 

CONtRASt-ENHANCED 
ULtRASONOGRAPHY
Colour and power Doppler ultrasonography have a low 
signal-to-noise ratio and thus can only depict blood flow 
in relatively large vessels and cannot detect intralesional 
vascularity.94 Conventional ultrasonography is limited 
in diagnosis of HCC, as it depends on a characteristic 
vascular enhancement pattern. Ultrasound contrast 
agents can overcome this limitation.

Ultrasound contrast agents consist of microbubbles 
containing air or various gases within a shell. When 
administered into the vasculature, the agents enhance the 
backscatter of the ultrasound waves by resonance within 
sonic windows.95 This results in a marked amplification 
of the signals from the blood flow and provides additional 
information about the microvasculature.94

CEUS has been applied to HCC management, including 
surveillance, diagnosis, CEUS-guided treatment, 
treatment response evaluation, and follow-up.96 CEUS 
is safer and more assessable than CECT or CEMRI for 
real-time dynamic assessment of vascular perfusion. 
CEUS with Sonazoid provides an additional Kupffer 
phase, which is similar to MRI with superparamagnetic 
iron oxide. HCCs in cirrhotic livers usually do not 
harbour reticuloendothelial (Kupffer) cells, which 
differ from normal and cirrhotic liver parenchyma. This 
leads to a visualised defect in Sonazoid uptake in the 
postvascular or Kupffer phase.97-100

The Japan Society of Hepatology and Asian Pacific 
Association for the Study of the Liver guidelines 
have incorporated CEUS with Sonazoid into HCC 
management. The guidelines allow confirmation of 
HCC when CEUS shows a hypervascular lesion and / 
or a defect in the Kupffer phase, even if a lesion does 
not display the typical arterial hyperenhancement 
and subsequent washout on either CECT or CEMRI. 
However, CEUS has been removed from the latest 
American Association for the Study of Liver Diseases 
guidelines because of potential false-positive HCC 
diagnosis in patients with ICC and because Sonazoid is 
not licensed for use in the liver in the United States.101 
The role of CEUS in differentiation of HCC and ICC 
remains controversial. On CEUS, compared with HCCs, 
ICCs enhance to a lesser degree and at a later time 
after injection, as well as washing out more quickly. In 
experienced hands, CEUS and CECT are comparably 

accurate in diagnosing ICC.102-105

Ultrasound Contrast Agents
The first-generation ultrasound contrast agent, Levovist 
(Bayer Schering Pharma, Berlin, Germany), consists 
of air within a shell of galactose microparticles 
(99.9%) / palmic acid (0.1%). The lack of stability 
of the microparticles hampers its commercial use.95 
Second-generation ultrasound contrast agents such 
as SonoVue, Sonazoid, Definity (Lantheus Medical 
Imaging, North Billerica [MA], USA), and Optison 
(GE Healthcare, Princeton, NJ, USA) successfully 
stabilised microbubbles by replacing air with a 
more inert and slowly diffusing gas such as sulphur 
hexafluoride or perfluorobutane. Definity consists of 
octafluoropropane gas within a lipid shell, and Optison 
consists of octafluoropropane within an albumin shell. 
Both are approved for cardiac application only.95,106 
SonoVue consists of sulphur hexafluoride (SF6) 
within a phospholipid shell. SF6 is an inert molecule 
that does not interact with any other molecule in the 
body. After destruction of the microbubble, SF6 gas 
is excreted through the lungs only. The shell consists 
of a monolayer of an amphiphilic phospholipid. The 
outer side of the shell is in contact with blood and 
has hydrophilic properties, whereas the inner side 
has hydrophobic properties and the shell can contain 
SF6 gas with stability.94 As only 7.3% of SonoVue 
is phagocytosed by Kupffer cells, a parenchyma-
specific Kupffer phase cannot be obtained. Repeated 
injections are required to evaluate the entire liver, 
and thus its use is not approved in Japan.107 Sonazoid 
consists of perfluorobutane within a hydrogenated egg 
phosphatidylserine shell. In contrast to SonoVue, 99% 
of Sonazoid is phagocytosed by Kupffer cells and thus 
can be used to obtain both vascular phase and Kupffer 
phase images. The entire liver can be evaluated during 
the Kupffer phase, with microbubbles trapped by the 
Kupffer cells leading to a homogeneous enhancement in 
normal functioning liver parenchyma.95 Lesions lacking 
functioning Kupffer cells, including small malignant 
tumours, appear as defects. Currently, Sonazoid 
has been approved only in Japan and Korea for the 
evaluation of focal liver lesions.13

Mechanism and technique
The enhancement patterns of CEUS and CECT or 
CEMRI are not comparable, as the ultrasound contrast 
agent is retained only within the blood vessels, whereas 
CT and MRI contrast agents move into the extracellular 
space until the concentration is balanced between the 
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intravascular space and the extracellular space.108

The recommended dose of Sonazoid for evaluation of 
the liver is 0.015 ml/kg. Nonetheless, image quality is 
maintained at doses lower than the recommendation.107 
For SonoVue, after reconstitution as directed, 1 ml 
of the resulting dispersion contains 8 μl sulphur 
hexafluoride in the microbubbles, equivalent to 45 μg. 
The common single injection volume of dispersion is 
2.4 ml, although half-dose and repeat injections may be 
administered as needed.13

Vascularity of focal lesions can be evaluated during 
the arterial phase (10-20 seconds after injection and 
lasting 30-45 seconds). The PVP starts at 30-45 
seconds and lasts for 2-3 minutes, whereas the late 
phase starts at 2-3 minutes and lasts for 4-6 minutes. 
On the PVP or late phase images, the degree of 
washout between the focal liver lesion and the adjacent 
liver parenchyma can be compared.108 Washout is 
defined as the transition of iso- or hyper-enhancement 
to hypoenhancement as compared to the adjacent 
normal liver parenchyma.109 When using Sonazoid, 
a Kupffer-phase image can be additionally obtained 
from 10-15 to 120 minutes after injection.110,111 The 
equilibrium phase of CECT or CEMRI does not exist 
on CEUS, as the ultrasound contrast agent is a pure 
intravascular contrast agent, and no concentration 
equilibrium can be achieved.106

The mechanical index is def ined as the peak 
rarefactional (or negative) pressure divided by 
the square root of the ultrasound frequency. At 
a very low mechanical index, microbubbles stay 
static and only play a role in the scattering of the 
ultrasound beam. As the mechanical index increases, 
microbubbles oscillate at their resonance frequency 
linearly (<0.2) or nonlinearly (0.2-0.5). When the 
mechanical index is >0.5, microbubbles oscillate 
strongly and expand, resulting in disruption of the 
bubbles. CEUS images can be created from either the 
signals of the nonlinear oscillation of microbubbles 
or from microbubble destruction.94 In first-generation 
ultrasound contrast agents, a high mechanical index 
of >0.7 is used, and CEUS images are created using 
signals from microbubble destruction. As a result, 
only intermittent scanning can be performed for a few 
seconds and images are recorded frame by frame. In 
second-generation ultrasound contrast agents, a low 
mechanical index of <0.3 is used, and thus continuous, 
real-time scanning is possible.112 To detect specific 

signals from a small amount of ultrasound contrast 
agent, the use of the contrast-specific ultrasound mode 
is essential.106

Safety Considerations
Ultrasound contrast agents are excreted via the lungs 
only after the destruction of the microbubbles and 
therefore are not nephrotoxic. They are not iodinated 
and have no effect on thyroid function. Nonetheless, 
they can be regarded as foreign materials by the immune 
system and hypersensitivity reactions may occur.113 
The incidence of severe hypersensitivity reaction is 
about 0.002% in large-scale abdominal application 
studies.114,115 The overall incidence of hypersensitivity 
reaction of ultrasound contrast agents is less than that 
of iodinated CT contrast agents and is similar to that of 
MRI gadolinium chelate contrast agents.113

SonoVue is contraindicated in patients with acute 
coronary syndrome or clinically unstable ischaemic 
cardiac disease, right-to left shunts, severe pulmonary 
hypertension, uncontrolled systemic hypertension, 
and adult respiratory distress syndrome.116 Sonazoid 
is contraindicated in patients with right-to-left shunts, 
severe pulmonary hypertension, and adult respiratory 
distress syndrome. Sonazoid should be avoided or used 
with extreme caution in patients with egg allergies, as its 
shell is made of hydrogenated egg phosphatidylserine 
sodium. The safety of SonoVue and Sonazoid has not 
been evaluated in pregnant women; both should be 
avoided in women who are breast-feeding or in patients 
younger than 18 years.13 

Insonation of microbubbles may cause harmful effects 
to cells or tissue, such as microvascular rupture, 
haemolysis of red blood cells, increased heating around 
the ultrasound contrast agent, and killing of phagocytic 
cells that have engulfed the contrast agent.115 The 
European Federation of Societies for Ultrasound in 
Medicine and Biology recommends use with caution, 
as damage to the microvessels of the eye or brain can 
be clinically harmful.117 A mechanical index of >0.4 
rapidly accelerates this harmful biological effect and 
hence it should be maintained as low as possible.115

Diagnosis of Hepatocellular Carcinoma 
On CEUS, 93.5% to 97% of HCCs in cirrhotic livers 
exhibit arterial hyperenhancement in comparison with 
the surrounding liver tissue. Hyperenhancement in the 
arterial phase is usually homogeneous and intense, 
but may be inhomogeneous in larger nodules (>5 cm), 
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because of regional necrosis. A thin, perilesional, rim-
like hyperenhancement is seen in about 5% to 34.6% 
of HCCs, which may represent the tumour capsule or 
blood vessels around the lesion.118-121 Most HCCs show 
earlier enhancement than the surrounding liver tissue. 
The detection rates of hyperenhancement in lesions ≤1.0 
cm, 1.1-2.0 cm, and 2.1-3.0 cm are 67%, 83%-88%, 
and 92%-100%, respectively. CEUS has a relatively 
low ability to determine the characteristics of smaller 
lesions.120-123

Washout in the PVP to late phase is characteristic of 
HCC and is more common in larger lesions (up to 
80.4% in PVP and 95.3% in late phase).118,119 In lesions 
measuring 1-2 cm, only 53.5% exhibit washout in the 
PVP and 69% to 90.7% in the late phase.120,124 Washout 
is observed more frequently and quickly in HCCs with 
poorer grades of differentiation, compared with well-
differentiated HCCs, which tend to be iso-enhanced 
in the late phase.125-127 Compared with other liver 
malignancies such as ICC and metastatic liver cancer, 
HCC usually has less marked washout in the late 
phase.104,105,128,129 In HCC, washout tends to start later 
(60 seconds after injection), and in about 25% of cases, 
washout appears only after 180 seconds. Therefore, it is 
important to observe nodules in cirrhosis for >4 minutes 
to increase the sensitivity for the diagnosis of HCC 
(Figure 6).128

Pathologically, large regenerative nodules and low-
grade dysplastic nodules generally show arterial and 
capillary supply similar to that detected in the adjacent 
cirrhotic nodules, whereas high-grade dysplastic 
nodules and HCCs may show abnormally increased 
arterial supply. 33.3% to 60% of high-grade dysplastic 
nodules show arterial hyperenhancement, whereas 40% 
to 66.7% show hypo-enhancement. Washout is seldom 
seen in the late phase for high-grade dysplastic nodules, 
in contrast to typical HCCs.122,124

The sensitivity, specificity, and positive predictive value 
of CEUS in diagnosing HCC are 88.8%, 89.2%, and 
91.3%, respectively.119 Diagnostic ability is associated 
with nodule size; sensitivity for nodules of 1.0-2.0 cm, 
2.1-3.0 cm, and 3.1-5.0 cm is 69%-80%, 97%, and 
100%, respectively, and the specificity is 82%-87%, 
97%, and 100%, respectively.118,120,124

Hepatocellular Carcinoma Surveillance 
Conventional ultrasonography is non-invasive, low 
cost, has no radiation exposure, and is easily accessible, 

but its diagnostic accuracy is insufficient for HCC, 
particularly for small lesions.130 

CEUS is not recommended as the sole imaging tool to 
screen for HCC, because its arterial phase is too short 
to examine the entire liver, and washout in the PVP or 
late phase may not be always detected in small or well-
differentiated HCCs.13

In CEUS with Sonazoid, HCCs appear hypoechoic on 
the Kupffer phase, and the entire liver can be assessed 
with a single injection (Figure 7). Its specificity in 
diagnosing HCC is higher than that of conventional 
B-mode ultrasonography (97.8%-98.2% vs. 89.2%-
94.9%).131 The positive and negative predictive values 
have been reported as 99% and 97%, respectively.117 
Histologically advanced HCC might appear as more 
hypoechoic than the adjacent liver parenchyma on 
the Kupffer phase, which is comparable to the signal 
intensity difference in the HBP of Gd-EOB-DTPA-
enhanced MRI.132 In addition, the defect reperfusion 
image in both Kupffer-phase and arterial phase images 
can be evaluated simultaneously and with the same slice 
by reinjection of Sonazoid during the Kupffer phase.133 
CEUS with Sonazoid has higher diagnostic accuracy 
(95%) than CECT (82%) in the depiction of malignant 
hepatic lesions using the defect reperfusion technique.134

In patients with compensated hepatitis C virus–related 
liver cirrhosis, CEUS with Sonazoid is a cost-effective 
screening tool when the annual incidence of HCC is 
>2% and the sensitivity of CEUS in detecting HCC is 
>80%.135 Nonetheless, most centres prefer to use CEUS 
as a problem-solving tool, particularly for nodules 
measuring 1-2 cm.136

Hepatocellular Carcinoma intervention
In lesions with atypical patterns, ultrasound-guided 
percutaneous biopsy is recommended for definitive 
pathological diagnosis. CEUS prior to biopsy 
procedures can increase the diagnostic yield by 10% 
and decrease the false-negative rate, especially in large 
tumours with areas of necrosis. CEUS can localise the 
optimal site for biopsy by demonstrating regions of 
vascularised viable tumours and by avoiding regions of 
necrosis.137

Common HCC treatments include surgical resection and 
liver transplantation, ethanol ablation, radiofrequency 
ablation, and microwave ablation, particularly for small 
or focal recurrent / residual HCC lesions. Survival after 
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ablation in Child-Pugh A patients is 50% to 70% at 
5 years, comparable to that after resection.138-140 Prior 
to percutaneous therapy, CEUS can be used to assess 
HCC lesion size, margins, and its relationship with 
the surrounding structures, and to plan the treatment 
strategy.128 CEUS can also guide the real-time puncture 
during the arterial phase, PVP, late phase and in the 
instance of Sonazoid contrast, the Kupffer phase. For 
multiple lesions, ultrasound contrast agents can be 

Figure 6. (a) Pre–contrast injection ultrasonography of the liver 
showing a well-defined hyperechoic lesion at segment VI (arrow). 
Contrast-enhanced ultrasonography with Sonazoid showing 
avid homogeneous arterial enhancement of the lesion (b) in the 
arterial phase, and contrast washout (c) in the portovenous phase 
indicating a hepatocellular carcinoma (arrows).
 

Figure 7. Conventional ultrasonography of the liver showing two 
isoechoic lesions (arrows) that are distinctly hypoechoic (arrows) 
in the Kupffer phase on contrast-enhanced ultrasonography with 
Sonazoid (Courtesy of Prof. MJ Kim, Department of Radiology, 
Yonsei University College of Medicine).

(a)

(b)

(c)

Figure 8. Immediately after radiofrequency ablation for 
a hepatocellular carcinoma, the ablative zone (arrows) is 
hypoechoic on (a) conventional ultrasonography and has a thin 
rim enhancement on (b) contrast-enhanced ultrasonography with 
SonoVue, indicating post-ablative hyperaemia.

(a) (b)
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administered repeatedly to guide percutaneous therapy 
at multiple sites.128,141

Fusion imaging with conventional ultrasonography 
and CECT or CEMRI can be used for guiding biopsy 
or ablation of inconspicuous lesions. About 83% of 
HCCs that are inconspicuous on fusion imaging with 
conventional ultrasonography are well visualised on 
CEUS.142

treatment Response
The use of CECT or CEMRI to detect residual viable 
tumour or recurrent HCC for treatment response 
evaluation is widely accepted.143,144 CEUS is regarded as 
a competent alternative for this purpose.143,145-151

Intra-procedural CEUS is effective and comparable 
to early follow-up CECT in the assessment of 
percutaneous ablative therapies and adequacy of ablative 
margins.145,148,152,153 Intra-procedural CEUS reduces the 
numbers of incomplete treatments and re-treatments 
and the total cost of radiofrequency ablation for HCC.152 
Nonetheless, post-procedural reactive hyperaemia 
commences soon after ablative therapy, lasting up to a 
few weeks, potentially obscuring small-volume residual 
viable tumour. Uniform rim enhancement can be seen 
up to 30 days after radiofrequency ablation and should 
not be misdiagnosed as marginal tumour recurrence 
(Figure 8).106 

The role of CEUS versus CECT or MRI for long-term 
surveillance remains controversial.153 According to the 
modified Response Evaluation Criteria in Solid Tumors, 
viable HCC is defined as uptake of contrast agent in the 
arterial phase of CEUS, whereas complete response is 
defined as disappearance of any intratumoural arterial 
enhancement in HCC.149 CEUS and CECT show 
conflicting results depending on the timing of follow-
up; their results are comparable at 1 month or earlier, 
although the sensitivity of CEUS in detecting both local 
recurrence and new intrahepatic recurrence in long-term 
follow-up is lower than that of CECT.154 For response 
evaluation after transarterial chemoembolisation, the 
accuracy of CEUS ranges from 72.6% to 100% and 
that of CECT from 61% to 94%.143 The suboptimal 
performance of CEUS in long-term follow-up can be 
attributed to its difficulty in providing an overview 
of the entire liver to detect HCC progression and 
intrahepatic recurrence even after reinjection of 
contrast.128,153,154 Nonetheless, when CECT or CEMRI 
is contraindicated or inconclusive, CEUS may be an 

alternative to assess tumour progression and intrahepatic 
recurrence.106,128

Guidelines on Management of Hepatocellular 
Carcinoma
Most guidelines recommend multiphase multidetector 
row CT and / or contrast-enhanced ECA-MRI as the 
standard imaging modalities for diagnosis of HCC, 
based on the typical arterial phase hyperenhancement 
and washout on the PVP or delayed phase. Gd-EOB-
MRI is recommended as the primary diagnostic imaging 
modality for the diagnosis of HCC by the Japan Society 
of Hepatology, the Korean Liver Cancer Study Group 
and National Cancer Center, and the LI-RADS, which 
is acknowledged by the American Association for 
the Study of Liver Diseases.18 The guidelines set by 
the European Association for the Study of the Liver-
European Organisation for Research and Treatment of 
Cancer and the Asian Pacific Association for the Study 
of the Liver are being updated. 

According to the 2014 Japan Society of Hepatology 
guidelines, a non-invasive diagnosis of HCC can be 
made when a mass shows: (1) arterial hypervascularity 
and venous washout, (2) arterial hypervascularity 
without venous washout but with hypointensity on the 
HBP, or (3) arterial hypovascularity on Gd-EOB-MRI 
but with hypervascularity on CEUS with Sonazoid and /  
or defect in the Kupffer phase. Haemangioma must be 
excluded; it can exhibit pseudowashout in the transition 
phase (the late dynamic phase between PVP and HBP 
usually in a 3-minute delayed scan), and hypointensity 
on the HBP as well as defect in the Kupffer phase on 
CEUS with Sonazoid.18 

According to the 2014 Korean Liver Cancer Study 
Group and National Cancer Center guidelines, 
hypointensity on the HBP cannot be regarded as an 
alternative to washout, but hypoenhancement on the 
3-minute delayed scan can be considered as washout.18 

In contrast, the LI-RADS versions 2014 and 2017 
stipulate that washout appearance should only be 
described on the PVP, as hypointensity on the transition 
phase alone is partially attributed to the progressive 
contrast uptake of the background liver parenchyma. 
It incorporates hypointensity on the HBP as one of the 
ancillary features of malignancy, thus allowing the 
observation to be upgraded to LR-4, or probably HCC.12 

The difference in adoption of Gd-EOB-MRI into 
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various guidelines reflects the preference of either 
high sensitivity or high specificity. For example, when 
hypointensity in the transition phase and / or HBP is 
considered as an alternative to washout, the sensitivity is 
increased at the cost of increasing the likelihood of false 
positive, such as haemangioma and ICC. In countries 
where liver transplantation is not a prevalent treatment 
for HCC, the potential increase in false positive and 
treatment thereof may be considered acceptable. 

Compared with Gd-EOB-MRI, CEUS is not well-
accepted in management guidelines worldwide. This 
can be attributed to the limited availability of Sonazoid 
and hence its user experience. 

CEUS and Gd-EOB-MRI are complementary in HCC 
management. In Hong Kong, both modalities tend to be 
reserved as problem-solving tools. CEUS with Sonazoid  
can be a cost-effective strategy in HCC surveillance, 
and Gd-EOB-MRI is more cost-effective than ECA-
MRI and CECT in HCC diagnosis. In addition, CEUS is 
complementary to conventional ultrasonography during 
interventional procedures. The use of Gd-EOB-MRI and 
CEUS in HCC management should be prospectively 
validated, based on differences in disease incidence, 
healthcare system, and cost worldwide.

CONCLUSiON
Gd-EOB-MRI improves the abi l i ty to de tec t 
dysplastic nodules, diagnose early or atypical HCCs, 
differentiate HCC from vascular pseudolesions and 
non-hepatocellular tumours, and predict outcome. It is 
superior to CECT and ECA-MRI and has been included 
in various HCC management guidelines. CEUS can 
play a role in HCC surveillance, problem solving in 
HCC diagnosis, guide interventional procedures, and 
assess treatment response. Sonazoid has an additional 
benefit of providing the Kupffer phase, during which 
the entire liver can be assessed from a single injection. 
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